Combining Monte Carlo Estimators - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Combining Monte Carlo Estimators

Description:

Title: Importance Sampling in Option Pricing example Author: Don McLeish Last modified by: J.Q. User Created Date: 10/7/2004 1:24:27 PM Document presentation format – PowerPoint PPT presentation

Number of Views:86
Avg rating:3.0/5.0
Slides: 13
Provided by: DonM100
Category:

less

Transcript and Presenter's Notes

Title: Combining Monte Carlo Estimators


1
Combining Monte Carlo Estimators
  • If I have many MC estimators, with/without
    various variance reduction techniques, which
    should I choose?

2
Combining Estimators
  • Suppose I have m unbiased estimators all of the
    same parameter
  • Put these estimators in a vector Y

Any linear combination of these estimators with
coefficients that add to one is also an unbiased
estimator of the parameter Which such
linear combination is best?
3
Best linear combination of estimators.
4
Estimating Covariance
5
Theorem on Optimal Linear Combination of
estimators
6
Example combining the estimators of the call
option price
7
Example (cont)
8
MATLAB function OPTIMAL
  • function o,v,b,t1optimal(U)
  • generates optimal linear combination of five
    estimators and outputs
  • average estimator and variance.
  • t1cputime
  • Y1(.53/2)(fn(.47.53U)fn(1-.53U))
    t1t1 cputime
  • Y2.37.5(fn(.47.37U)fn(.84-.37U)).16.5(fn
    (.84.16U)fn(1-.16U))
  • t1t1 cputime
  • Y3.37fn(.47.37U).16fn(1-.16U)
    t1t1 cputime
  • intg2(.53)3.532/2
    Y4intgfn(U)-GG(U) t1t1 cputime
  • Y5importance('fn','importancedens','Ginverse',U)
    t1t1 cputime
  • XY1' Y2' Y3' Y4' Y5'
  • mean(X)
  • Vcov(X) Zones(5,1) Cinv(V)
    bCZ/(Z'CZ)
  • omean(Xb) this is mean of the optimal
    linear combinations
  • t1t1 cputime
  • v1/(Z'V1Z)
  • t1diff(t1) these are the cputimes of the
    various estimators.

9
Results for option pricing
  • o,v,boptimal(rand(1,100000))
  • Estimators 0.4619 0.4617 0.4618
    0.4613 0.4619
  • o 0.46151 best linear combination (true
    value0.46150)
  • v 1.1183e-005 variance per uniform input
  • b -0.5503 1.4487 0.1000 0.0491
    -0.0475

10
Efficiency of Optimal Linear Combination
  • Efficiency gain based on number of uniform random
    numbers 0.4467/0.00001118 or about 40,000.
  • However, one uniform generates 5 estimators
    requiring 10 function evaluations.
  • Efficiency based on function evaluations approx
    4,000
  • A simulation using 500,000 uniform random numbers
    13 seconds on Pentium IV (2.4 Ghz) equivalent
    to twenty billion simulations by crude Monte
    Carlo.

11
Interpreting the coefficients b. Dropping
estimators.
  • Variance of the mean of 100,000 is Standard error
    is around .00001
  • Some weights are negative, (e.g. on Y1) some more
    than 1 (on Y2), some approximately 0 (could they
    be dropped? For example if we drop

12
More examples
  • Integrate the function
  • (exp(u)-1)/(exp(1)-1), u is from 0 to 1
  • The efficiency gain is over 26000.
Write a Comment
User Comments (0)
About PowerShow.com