Title: Heavy Fermion Superconductivity in PrOs4Sb12 UCu5-xPdx
1Tuning Unconventional CeMIn5 and PuMGa5
Superconductors
Eric Bauer Los Alamos National Laboratory Collabo
rators J. Sarrao, J. Thompson, L. Morales, N.
Curro, T. Caldwell, T. Durakiewicz, J. Joyce, A.
Balatsky, M. Graf
2Localized-Itinerant Crossover in Pu 5f electrons
3Conventional vs Unconventional Superconductivity
- Conventional
- Electrons pair with opposite spin and momentum
- ? is finite over entire Fermi surface
- Finite ? ? exponential T- dependence of
physical properties below Tc - C T1-1 e -D/kT
- Superconductivity destroyed by magnetic
impurities - BCS theory ? electron-lattice interaction is
glue -
- Unconventional
- Electrons pair with more complicated
spin/momentum relationships - ? is zero over certain parts of Fermi surface
- Gap zeros ? power law dependence of physical
properties below Tc - C T2, T1-1 T3 (line nodes)
- Magnetic impurities essential for
superconductivity - Magnetic (spin) fluctuations are glue ?
s-wave isotropic gap
d-wave nodes in k-space where gap vanishes
J
J
I
e-
e-
f
f
4PuCoGa5 Superconductivity
J. L. Sarrao et al., Nature 02
- Perfect diamagnetism (small Meissner effect) and
zero resistivity below Tc18.5 K - C/T ? bulk superconductivity
- Assuming BCS weak coupling, ?C/?Tc1.43 ? ? 77
mJ/molK2
5Normal State Properties of PuCoGa5
m0.68 mB, qCW-2 K m(Pu3)0.84 mB
?(T) T4/3
PuRhGa5 has similar normal state properties and
Tc 8.7 K
6Unconventional Superconductivity in CeCoIn5 and
PuCoGa5
R. Movshovich et al. PRL 01 F. Wastin et al.
JPCM03 E. D. Bauer et al. PRL04
- Unconventional superconductivity (power laws in
Csc(T), ?, and 1/T1)
7PuMGa5 CeMIn5 Tc and c/a
Monthoux Lonzarich., PRB 02
Bauer et al. PRL 04
- CeMIn5 PuMGa5 isostructural but order of
magnitude higher Tc in Pu-materials - dlnTc/d(c/a) ?100 in both predicts PuIrGa5
not superconducting and it is not - Common underlying physics
- Origin of Tc ? c/a correlation in both 4f and 5f
homologs?
8PuMGa5 CeCoIn5 Similar T-P Phase Diagrams
- NFL normal state for CeCoIn5 and PuMGa5
- T-P phase diagrams difficult to reconcile with
phonon mediated superconductivity - Similar diagram to CeIn3
- Tuning of relevant spin fluctuations
- (Magnetically mediated superconductivity)
CeCoIn5 bandwidth tuning PuCoGa5, Tc 2.3 K
? 18.5 K
Sidorov et al. PRL 01, Griveau et al. ICM
(2003), Bauer et al. PRL (2004)
9Energy Scale Tuning in CeCoIn5 AMGa5
- S-shape of r(T) curve suggests role of spin
fluctuations important - Increase in bandwidth may be responsible for
large increase in Tc
10NMR Spin Singlet Superconductor
- Cooper pairs have singlet pairing
cspin ( ??gt - ??gt ) /?2 - Odd parity under particle exchange
- To satisfy Fermi statistics, y(r) must have even
parity L 0, 2, (s-, d-, wave) - Finite residual spin susceptibility from
impurities (radioactive decay)
(N. Curro, Nature 05)
Cooper pair y(r) cspin
11Spin Lattice Relaxation
Power law behavior T1-1 T3
Most likely a d-wave superconductor!
- Power law behavior of normal state T1-1 ?
Proximity to AFM QCP (T. Moriya,85,96)
Sakai 05
12Scaling of Normal and Superconducting States
(S. Nakamura,96)
Curro et al. Nature 05
- Single energy scale Tsf (or TK) largely
responsible for pairing mechanism
T1T scales with T/Tc
- s-wave T1T constant (Fermi liquid)
- d-wave T1T (T T0)b (Antiferromagnetic
fluctuations)
13Conclusions
- Plausible relation among
- CeIn3 ? CeCoIn5 ? PuCoGa5
- CeIn3 layering CeCoIn5,
- Tc 0.2 K ? 2.3 K
- CeCoIn5 bandwidth tuning PuCoGa5,
- Tc 2.3 K ? 18.5 K
-
-
- d-wave (magnetically mediated) superconductivity
in PuCoGa5 - Continuum of energy scales in AFM mediated
mechanism of superconductivity
14(No Transcript)
15mSR Results
G. Morris et al., (2005)
- No evidence for static (ordered) magnetic
moment in superconducting state (ZF mSR) - No evidence for time-reversal symmetry breaking
SC state
- Penetration depth increases with decreasing T
down to 3 K - ? consistent with unconventional (d-wave)
superconductivity
165f Configuration Photoemission and Models
- For high Z elements, especially 5fs, with less
than half-filled f-shell, expect sextet to be
filled as shown with increasing f-count
T. Hotta and K. Ueda PRB 03 T. Maehira et al.,
PRL 03
Ce3 4f1
U3 5f3
Pu3 5f5
Np3 5f4
- j-j coupling scheme ? Pu3 hole analog of Ce3,
and, consequently, expect similar Fermi surfaces
for isoelectronic Ce-based homologs of PuCoGa5
17Fermi Surfaces of CeCoIn5 ACoGa5 (A U, Np, Pu)
R. Settai et al., JPCM 01
PuCoGa5
CeCoIn5
UCoGa5
- Quasi-2D Fermi surfaces in CeCoIn5 and PuCoGa5
- Fermi-surface topology different for UCoGa5 and
NpCoGa5 - -- Larger volume (itinerant behavior)
- -- more 3D-like
NpCoGa5
T. Maehira et al., PRL 03 I. Opahle and P. M.
Oppeneer, PRL 03
18Prospects for Applied Superconductivity
- Large magnetic irreversibility in aged PuCoGa5
even at Tgt0.9Tc - Estimate Jc from M(H) and Bean model
- Jcgt104 A/cm2
- Competitive performance for superconductor
applications - Due to radiation-induced self-damage,
- Tc decreases, Jc increases with time
19Total Energy Calculations
J. M. Wills, unpublished
- ? as with ?-Pu, minimum total energy with correct
cell volume when 4 of Pus 5f electrons are
localized -- consistent with photoemission
results - ? also, total energy lowest for AFM/FM states (I.
Opahle and P. M Oppeneer) - ? neglects potential role of Kondo or similar
many-body effects
20Magnetically Mediated Superconductivity
CeIn3
- Ambient pressure antiferromagnet, TN10 K
- Non-Fermi liquid normal state near QCP
- Tc 200 mK at 25 kbar
- Evidence for unconventional superconductivity in
1/T1 - (Kawasaki et al.)
N.D. Mathur et al., Nature (1998)
21Unconventional Superconductivity in CeCoIn5
- Unconventional superconductivity
- (power laws in Csc(T), ?, and 1/T1)
- 4-fold modulation of ? for H ab-plane
- Consistent with d-wave symmetry
- (Izawa et al. PRL 01)
CeMIn5
22Generalized Doping-Temperature Phase Diagram
Pagliuso et al.
G.-q. Zheng et al.
- 1/T1 measured on same NQR line for all T ?
coexistence of superconductivity and magnetism - Single T1 below TN ? spatially homogeneous SC
CeCoIn5
CeRhIn5
CeIrIn5
CeCoIn5
23CeMIn5 Tc and c/a
CeMIn5
- Structural tuning of relevant spin fluctuations
responsible for superconductivity -
- CeIn3 layering CeCoIn5
- ? Tc 0.2 K ? 2.3 K
Monthoux Lonzarich., PRB 02
24Outline
- Introduction
- Superconducting and normal state properties of
PuCoGa5 - Similarity to CeMIn5 (MCo, Rh, Ir)
heavy-fermion superconductors - Two ways to enhance superconducting properties
in 115 materials - Evidence for magnetically mediated
superconductivity in PuCoGa5 - PuCoGa5 a bridge between heavy-fermion and
high-Tc superconductors - Conclusions
25Quantum Criticality
Non Fermi Liquid (unusual metal)
T
(Anti-) Ferromagnet
SC?
Fermi Liquid (simple metal)
d (x, P, etc.)
dc
- Unusual T-dependences of properties at low-T
(non-Fermi Liquid)
Localized f-electrons
Itinerant f-electrons
Quantum Critical Point
26Quantum Criticality
J. Custers et al., Nature (2003)
n
M. Jaime et al., (2003)
Unusual low-T behavior
Emergence of exotic phases
rr0ATn
R. B. Laughlin et al., Adv. Phys. (2001)
27Itinerant/Localized Behavior in ACoGa5
AmCoGa5 Localized Paramagnet
NpCoGa5 Itinerant AFM
UCoGa5 TIP
J. Joyce PRL, 03
- Agreement with calculated PES, assuming 4 of 5
5fs localized in a magnetic singlet and
itinerant 1 5f
PuCoGa5 Itinerant/Localized SC
28Structural Tuning of CeMIn5 AMGa5 (A U, Np,
Pu)
Sarrao et al. Physica B 05
- Slope of linear relation between tetragonality t
(2zc-a)/a and Tc order of magnitude higher in
PuMGa5 compared to CeMIn5 - ? factor of 10 increase in Tc likely due to
increased hybridization in Pu-materials -
- Magnetic structure and TN of UMGa5 NpMGa5 of
depend crucially on t (Kaneko PRB 03,
Hotta PRB 03)
29PuCoGa5 Superconductivity
- Estimates of g
- DC/Tc? g 100 mJ/molK2
- dHc2/dT ? g 160 ? g 100 mJ/molK2
- Sel(T) ? g 80
- Power law in SC specific heat
- Csc a T2 (5.3 K lt T lt 7.2 K)
30(No Transcript)
31Heavy Fermions
- Ce, Pr, Yb, U-based intermetallic compounds
- Large electronic specific heat coefficient C/T
g 1 J/mol K2 - g a N(EF) a m a 1/TK
- Kondo effect believed to be origin of
heavy-fermion behavior
32UCoGa5 Temperature Independent Paramagnet
- Weak T-dependence of c(T)
- T2 behavior of r(T)
- Small electronic specific heat g 20
mJ/mol K2