Magnetic Fields in Molecular Clouds Richard M. Crutcher University of Illinois - PowerPoint PPT Presentation

About This Presentation
Title:

Magnetic Fields in Molecular Clouds Richard M. Crutcher University of Illinois

Description:

Title: No Slide Title Author: Dick Crutcher Last modified by: Dick Crutcher Created Date: 1/25/1999 4:07:23 PM Document presentation format: On-screen Show – PowerPoint PPT presentation

Number of Views:75
Avg rating:3.0/5.0
Slides: 33
Provided by: DickC150
Category:

less

Transcript and Presenter's Notes

Title: Magnetic Fields in Molecular Clouds Richard M. Crutcher University of Illinois


1
Magnetic Fields in Molecular Clouds Richard
M. Crutcher University of Illinois Collaborators
Tom Troland, University of Kentucky Edith
Falgarone, Ecole Normale Superieure Shih-Ping
Lai, University of Maryland Ramprasad Rao,
SubMillimeter Array Paulo Cortes, University of
Illinois Jason Kirk, University of
Illinois Doug Roberts, Northwestern
University Josep Girart, University of Barcelona
2
Outline of Talk
  • possible roles of magnetic fields
  • important parameters
  • observational techniques
  • observational result exemplars
  • conclusions
  • implications for study of CMB polarization
  • the future

3
Possible Roles of Magnetic Fields
  • formation of molecular clouds
  • fragmentation to form cores
  • support against collapse
  • transport of angular momentum
  • from central regions of cores,
  • enabling star formation

4
Field Morphology
  • Strong B, magnetic support implies
  • non-tangled (smooth) field lines
  • hourglass morphology

Shu, The Physical Universe (1982)
5
Mass-to-Flux Ratio M/?
mass/flux ratio ? gravitational collapse /
magnetic support
  • Uniform disk Nakano Nakamura (1978)

critical?
subcritical?
?
  • Observing M/?

supercritical?
  • ? definition
  • Geometry correction

Ciolek Mouschovias (1994)
6
Scaling of B with ? B ? ??
B ? ?0
B ? ?1
Spherical collapse (weak magnetic fields)
Magnetic support, ambipolar diffusion
  • flux freezing M ? ?
  • mass conservation

B ? ?0.4
Ciolek Mouschovias (1994)
Mestel (1966)
7
Observational Techniques
1. Zeeman effect
V ? dI/d? Blos Q,U ? dI/d?2 Bpos
2. Polarization of dust emission ? linear
polarization ? B ? morphology of Bpos ?
indirectly (Chandrasekhar Fermi) ?
Bpos ? 0.5(4??)1/2 ?Vlos /??
3. Goldreich-Kylafis effect ? anisotropic
radiation field ? non-LTE magnetic sublevels
? linear polarization ? or ?? B ? morphology of
Bpos ? Chandrasekhar-Fermi may be applied
to estimate Bpos
8
L1544 Starless Core
n(H2) ? 5 ? 105 cm-3, N(H2) ? 4 ? 1022, ?? ? 13?,
Bpos ? 140 ?G, ?c ? 0.8
Crutcher et al.
(2004)
9
L1544 Starless Core
n(H2) ? 1 ? 104, N(H2) ? 9 ? 1021, Blos 11 µG,
?c ? 1.1
n(H2) ? 5 ? 105 cm-3, N(H2) ? 4 ? 1022, ?? ? 13?,
Bpos ? 140 ?G, ?c ? 0.8
Crutcher et
al. (2004)
Crutcher Troland (2000)
10
L183 L1498 Starless Cores
L183
L1498
Crutcher et al. (2004)
Kirk Crutcher (2005)
n(H2) ? 3 ? 105, N(H2) ? 3 ? 1022, ?? ? 13?, Bpos
? 80 µG, ?c ? 0.9
?? ? 40?
11
NGC1333 IRAS4 (BIMA 230 GHz)
Girart et al. (1999)
Bpos gt 1 mG
12
NGC1333 IRAS4 (SMA 345 GHz)
Rao, Girart and Marrone
13
DR21(OH)
Blos 0.4, 0.7 mG
Lai et al. (2003)
Crutcher et al. (1999)
14
DR21(OH)
  • Linearly Polarized J2-1 and J1-0 Lines
  • J2-1 polarization is perpendicular to dust
    polarizaton and therefore parallel to the
    magnetic field
  • J1-0 polarization is
  • orthogonal to J2-1
  • polarization!
  • requires two sources of anisotropic CO excitation
  • anisotropic velocity gradient (and ?), and photon
    trapping
  • IR from compact dust cores

6
of positions
4
2
50 70 90 110
?21 ?10
15
DR21(OH)
Cortes, Crutcher, Watson (2005)
16
DR21(OH)
1. CO polarization n(H2) 102, Bpos ? 0.01
mG 2. Dust polarization CN Zeeman n(H2)
106, N(H2) ? 3 ? 1023 Bpos ? Blos ? 0.7 mG, ?c ?
1.1 Combining 1 and 2, B ? ?0.45
17
The Orion Molecular Cloud
18
NGC 2024 (Orion B) Magnetic Field Maps
Crutcher et al. (1999)
19
NGC 2024 (Orion B)
Lai, Crutcher, et al. (2001)
20
NGC 2024 SCUBA Dust Polarization
Matthews et al. (2002)
21
Orion Molecular Cloud
Girart et al. 2004
22
Orion Molecular Cloud
Girart et al. 2004
23
Orion Molecular Cloud
Rao et al. 1998
Houde et al. 2004
24
W3OH
CN Zeeman, Blos 1.1 mG
Turner Welch 1984
Falgarone, Crutcher, Troland 2005
25
W3OH
8-11 mG
n(H2) ? 6 ? 106, N(H2) ? 5 ? 1023, Blos ? 3.1 mG,
?c ? 0.5
Gusten et al. 1994
26
Mass to Magnetic Flux Ratios
mass/flux ratio (?) ? gravitational collapse
/magnetic support
H I clouds, subcritical!
27
Field Strength vs. Density
B ? ?? Weak B ? 2/3 Strong B ? ? 0.4
? ? 0.47 0.08
28
Conclusions for Molecular Cores
  • B ? ?0, n lt 103
  • ? molecular clouds form
  • by accumulation along B
  • Magnetic fields usually not tangled
  • ? B dominates turbulence
  • Hourglass B morphology on cores
  • ? magnetic support
  • M/? critical in molecular cores
  • ? magnetic support
  • B ? ??, ? ? 0.4-0.5 ? 2/3
  • ? magnetic support

29
Dust Polarization and the CBM
Arce, et al 1998
30
Molecular Cirrus
Desert, Bazell, Boulanger 1988
Stark 1995
31
Some Telescopes Used for Study of B
32
Coming Telescope for Study of B
Write a Comment
User Comments (0)
About PowerShow.com