Title: 8.2 Angles in Polygons
18.2 Angles in Polygons
2Interior and Exterior Angles
exterior angle
exterior angle
exterior angle
interior angles
exterior angle
exterior angle
3Polygon Exterior Angles Theorem
- The sum of the exterior angles of a convex
polygon is always 3600
4Polygon of sides of Triangles Sum of Interior Angles
Triangle
Quadrilateral
Pentagon
Hexagon
Heptagon
Octagon
Nonagon
Decagon
Dodecagon
n-gon
5Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral
Pentagon
Hexagon
Heptagon
Octagon
Nonagon
Decagon
Dodecagon
n-gon
6Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon
Hexagon
Heptagon
Octagon
Nonagon
Decagon
Dodecagon
n-gon
7Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon
Heptagon
Octagon
Nonagon
Decagon
Dodecagon
n-gon
8Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon
Octagon
Nonagon
Decagon
Dodecagon
n-gon
9Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon
Nonagon
Decagon
Dodecagon
n-gon
10Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon 8 6 10800
Nonagon
Decagon
Dodecagon
n-gon
11Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon 8 6 10800
Nonagon 9 7 12600
Decagon
Dodecagon
n-gon
12Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon 8 6 10800
Nonagon 9 7 12600
Decagon 10 8 14400
Dodecagon
n-gon
13Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon 8 6 10800
Nonagon 9 7 12600
Decagon 10 8 14400
Dodecagon 12 10 18000
n-gon
14Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon 8 6 10800
Nonagon 9 7 12600
Decagon 10 8 14400
Dodecagon 12 10 18000
n-gon n n 2 (n 2) 1800
15Polygon Interior Angles Theorem
- For any convex polygon with n sides, the sum of
the interior angles can be found with the
following formula - (n 2) 1800