8.2 Angles in Polygons - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

8.2 Angles in Polygons

Description:

8.2 Angles in Polygons Textbook pg 417 Interior and Exterior Angles Polygon Exterior Angles Theorem The sum of the exterior angles of a convex polygon is always 3600 ... – PowerPoint PPT presentation

Number of Views:126
Avg rating:3.0/5.0
Slides: 16
Provided by: Smyrn1
Category:

less

Transcript and Presenter's Notes

Title: 8.2 Angles in Polygons


1
8.2 Angles in Polygons
  • Textbook pg 417

2
Interior and Exterior Angles
exterior angle
exterior angle
exterior angle
interior angles
exterior angle
exterior angle
3
Polygon Exterior Angles Theorem
  • The sum of the exterior angles of a convex
    polygon is always 3600

4
Polygon of sides of Triangles Sum of Interior Angles
Triangle
Quadrilateral
Pentagon
Hexagon
Heptagon
Octagon
Nonagon
Decagon
Dodecagon
n-gon
5
Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral
Pentagon
Hexagon
Heptagon
Octagon
Nonagon
Decagon
Dodecagon
n-gon
6
Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon
Hexagon
Heptagon
Octagon
Nonagon
Decagon
Dodecagon
n-gon
7
Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon
Heptagon
Octagon
Nonagon
Decagon
Dodecagon
n-gon
8
Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon
Octagon
Nonagon
Decagon
Dodecagon
n-gon
9
Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon
Nonagon
Decagon
Dodecagon
n-gon
10
Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon 8 6 10800
Nonagon
Decagon
Dodecagon
n-gon
11
Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon 8 6 10800
Nonagon 9 7 12600
Decagon
Dodecagon
n-gon
12
Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon 8 6 10800
Nonagon 9 7 12600
Decagon 10 8 14400
Dodecagon
n-gon
13
Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon 8 6 10800
Nonagon 9 7 12600
Decagon 10 8 14400
Dodecagon 12 10 18000
n-gon
14
Polygon of sides of Triangles Sum of Interior Angles
Triangle 3 1 1800
Quadrilateral 4 2 3600
Pentagon 5 3 5400
Hexagon 6 4 7200
Heptagon 7 5 9000
Octagon 8 6 10800
Nonagon 9 7 12600
Decagon 10 8 14400
Dodecagon 12 10 18000
n-gon n n 2 (n 2) 1800
15
Polygon Interior Angles Theorem
  • For any convex polygon with n sides, the sum of
    the interior angles can be found with the
    following formula
  • (n 2) 1800
Write a Comment
User Comments (0)
About PowerShow.com