Electoral%20Predictions%20with%20Twitter:%20a%20Machine-Learning%20approach - PowerPoint PPT Presentation

About This Presentation
Title:

Electoral%20Predictions%20with%20Twitter:%20a%20Machine-Learning%20approach

Description:

A multi-level geographical study of ... Learning weights to evaluate Twitter user ... word Sentiment Analysis per candidate METHODS 2 26/05/15 * 26/05 ... – PowerPoint PPT presentation

Number of Views:140
Avg rating:3.0/5.0
Slides: 19
Provided by: MacS151
Category:

less

Transcript and Presenter's Notes

Title: Electoral%20Predictions%20with%20Twitter:%20a%20Machine-Learning%20approach


1
Electoral Predictions with Twitter a
Machine-Learning approach
  • M. Coletto1,3, C. Lucchese1, S. Orlando2, and R.
    Perego1
  • 1 ISTI-CNR, Pisa
  • 2 University Ca Foscari of Venice
  • 3 IMT Institute for Advanced Studies, Lucca

2
  • INTRODUCTION
  • In this work we study how Twitter can provide
    some interesting insights concerning the primary
    elections of an Italian political party.

3
  • AGENDA
  • STATE-OF-THE-ART
  • DATA
  • BASELINE
  • METHODS
  • AGE BIAS
  • CONCLUSION

4
  • STATE-OF-THE-ART
  • Twitter for predictive tasks from prediction of
    stock market 1 to movie sales 2, and
    pandemics detection 3.
  • Many articles propose quantitative approaches to
    predict the electoral results in different
    countries US 4, Germany 5, Holland 6,
    Italy 7.

1 Bollen, J., Mao, H., Zeng, X. Twitter mood
predicts the stock market. Journal of Computa-
tional Science 2(1), 18 (2011) 2 Asur, S.,
Huberman, B.A. Predicting the future with social
media. In Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2010 IEEE/WIC/ACM
International Conference on. vol. 1, pp. 492499.
IEEE (2010) 3 Lampos, V., De Bie, T.,
Cristianini, N. Flu detector-tracking epidemics
on twitter. In Ma- chine Learning and Knowledge
Discovery in Databases, pp. 599602. Springer
(2010) 4 OConnor, B., Balasubramanyan, R.,
Routledge, B.R., Smith, N.A. From tweets to
polls Linking text sentiment to public opinion
time series. ICWSM 11, 122129 (2010) 5
Tumasjan, A., Sprenger, T.O., Sandner, P.G.,
Welpe, I.M. Predicting elections with twitter
What 140 characters reveal about political
sentiment. ICWSM 10, 178185 (2010) 6 Sang,
E.T.K., Bos, J. Predicting the 2011 dutch senate
election results with twit- ter. In Proceedings
of the Workshop on Semantic Analysis in Social
Media. pp. 5360. Association for Computational
Linguistics, Stroudsburg, PA, USA (2012) 7
Caldarelli,G.,Chessa,A.,Pammolli,F.,Pompa,G.,Pulig
a,M.,Riccaboni,M.,Riotta,G.A multi-level
geographical study of italian political elections
from twitter data. PloS one 9(5), e95809 (2014)

5
Volume-based
Content-based
6
  • DATA

7
(No Transcript)
8
  • BASELINE
  • Tumasjan, A., Sprenger, T.O., Sandner, P.G.,
    Welpe, I.M. Predicting elections with twitter
    What 140 characters reveal about political
    sentiment. ICWSM 10, 178185 (2010)
  • TweetCount
  • DiGrazia, J., McKelvey, K., Bollen, J., Rojas,
    F. More tweets, more votes Social media as a
    quantitative indicator of political behavior.
    PloS one 8(11), e79449 (2013)
  • UserCount

9
  • EVALUATION
  • MAE
  • (mean absolute error)
  • RMSE
  • (root-mean-square error)
  • MRM
  • (mean rank match)

10
  • METHODS
  • Proposed classification methods
  • UserShare
  • ClassTweetCount
  • ClassUserCount

11
(No Transcript)
12
  • METHODS 2
  • Training correcting factors through ML
  • Per candidate
  • Learning weights to evaluate Twitter user/ voters
    ratio
  • Metrics UserShare, ClassTweetCount
  • Content Analysis (100 most frequent hash-tags)
  • 1 feature per word
  • Sentiment Analysis per candidate

13
(No Transcript)
14
(No Transcript)
15
  • AGE BIAS

16
(No Transcript)
17
  • CONCLUSION
  • New predictors
  • Machine learning approach
  • Age bias analysis
  • LIMITATIONS AND FUTURE WORK
  • Twitter bias
  • Single dataset (European)
  • Arbitrariness (window, keywords, ..)

18
  • THANK YOU
  • QUESTIONS?
Write a Comment
User Comments (0)
About PowerShow.com