Title: Electoral%20Predictions%20with%20Twitter:%20a%20Machine-Learning%20approach
1Electoral Predictions with Twitter a
Machine-Learning approach
- M. Coletto1,3, C. Lucchese1, S. Orlando2, and R.
Perego1 - 1 ISTI-CNR, Pisa
- 2 University Ca Foscari of Venice
- 3 IMT Institute for Advanced Studies, Lucca
2- In this work we study how Twitter can provide
some interesting insights concerning the primary
elections of an Italian political party.
3- STATE-OF-THE-ART
- DATA
- BASELINE
- METHODS
- AGE BIAS
- CONCLUSION
4- Twitter for predictive tasks from prediction of
stock market 1 to movie sales 2, and
pandemics detection 3. - Many articles propose quantitative approaches to
predict the electoral results in different
countries US 4, Germany 5, Holland 6,
Italy 7.
1 Bollen, J., Mao, H., Zeng, X. Twitter mood
predicts the stock market. Journal of Computa-
tional Science 2(1), 18 (2011) 2 Asur, S.,
Huberman, B.A. Predicting the future with social
media. In Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2010 IEEE/WIC/ACM
International Conference on. vol. 1, pp. 492499.
IEEE (2010) 3 Lampos, V., De Bie, T.,
Cristianini, N. Flu detector-tracking epidemics
on twitter. In Ma- chine Learning and Knowledge
Discovery in Databases, pp. 599602. Springer
(2010) 4 OConnor, B., Balasubramanyan, R.,
Routledge, B.R., Smith, N.A. From tweets to
polls Linking text sentiment to public opinion
time series. ICWSM 11, 122129 (2010) 5
Tumasjan, A., Sprenger, T.O., Sandner, P.G.,
Welpe, I.M. Predicting elections with twitter
What 140 characters reveal about political
sentiment. ICWSM 10, 178185 (2010) 6 Sang,
E.T.K., Bos, J. Predicting the 2011 dutch senate
election results with twit- ter. In Proceedings
of the Workshop on Semantic Analysis in Social
Media. pp. 5360. Association for Computational
Linguistics, Stroudsburg, PA, USA (2012) 7
Caldarelli,G.,Chessa,A.,Pammolli,F.,Pompa,G.,Pulig
a,M.,Riccaboni,M.,Riotta,G.A multi-level
geographical study of italian political elections
from twitter data. PloS one 9(5), e95809 (2014)
5Volume-based
Content-based
6 7(No Transcript)
8- Tumasjan, A., Sprenger, T.O., Sandner, P.G.,
Welpe, I.M. Predicting elections with twitter
What 140 characters reveal about political
sentiment. ICWSM 10, 178185 (2010) - TweetCount
- DiGrazia, J., McKelvey, K., Bollen, J., Rojas,
F. More tweets, more votes Social media as a
quantitative indicator of political behavior.
PloS one 8(11), e79449 (2013) - UserCount
9- EVALUATION
- MAE
- (mean absolute error)
- RMSE
- (root-mean-square error)
- MRM
- (mean rank match)
10- Proposed classification methods
- UserShare
- ClassTweetCount
- ClassUserCount
11(No Transcript)
12- Training correcting factors through ML
- Per candidate
- Learning weights to evaluate Twitter user/ voters
ratio - Metrics UserShare, ClassTweetCount
- Content Analysis (100 most frequent hash-tags)
- 1 feature per word
- Sentiment Analysis per candidate
13(No Transcript)
14(No Transcript)
15 16(No Transcript)
17- New predictors
- Machine learning approach
- Age bias analysis
- LIMITATIONS AND FUTURE WORK
- Twitter bias
- Single dataset (European)
- Arbitrariness (window, keywords, ..)
18