CS3104: ?????? Principles of Digital Design [project2] floating-point number addition - PowerPoint PPT Presentation

About This Presentation
Title:

CS3104: ?????? Principles of Digital Design [project2] floating-point number addition

Description:

Title: Lecture 1: Course Introduction and Overview Author: Chung-Ta King Last modified by: VLSI Created Date: 8/12/1995 11:37:26 AM Document presentation format – PowerPoint PPT presentation

Number of Views:89
Avg rating:3.0/5.0
Slides: 13
Provided by: Chun111
Category:

less

Transcript and Presenter's Notes

Title: CS3104: ?????? Principles of Digital Design [project2] floating-point number addition


1
CS3104 ??????Principles of Digital
Designproject2 floating-point number addition
  • ??? ??
  • ?? ???
  • ????????????
  • ??????????

2
Scientific Notation
exponent
decimal point
Sign, magnitude
23
-24
6.02 x 10 1.673 x 10
radix (base)
Mantissa
Sign, magnitude
e - 127
IEEE F.P. (SP)?1.M x 2
  • Issues
  • Arithmetic (, -, , / )
  • Representation, Normal form
  • Range and Precision
  • Rounding
  • Exceptions (e.g., divide by zero, overflow,
    underflow)
  • Errors
  • Properties ( negation, inversion, if A B then
    A - B 0 )

3
Floating-Point Representation
Representation of floating point numbers in IEEE
754 standard single precision
1
8
23
S
E
sign
M
mantissa sign magnitude, normalized binary
significand w/ hidden integer bit 1.M
exponent excess 127 binary integer
actual exponent is e E - 127
0 lt E lt 255
S
E-127
N (-1) 2 (1.M)
Magnitude of numbers that can be represented is
in the range
-126
127
23
)
2
(1.0)
(2 - 2
to
2
which is approximately
-38
38
to
3.40 x 10
1.8 x 10
(integer comparison valid on IEEE Fl.Pt. numbers
of same sign!)
4
Floating-Point Representation
  • Examples

-0.75 -0.11x20 -1.1x2(-1) 1 01111110
10000 i.e. (-1) x (1 .1000 0000 0000 0000 0000
000) x (2 ) 0 0 00000000 0 . . . 0
-1.5 1 01111111 10 . . . 0
1
126
5
Floating-Point Addition
  • Basic addition algorithm
  • Illustrate 9.999ten x 10 1.610ten x 10
  • Assume that 4 decimal digits of the significand
    and two
  • decimal digits of the exponent.
  • STEP 1 compute Ye - Xe (getting ready to align
    binary point)
  • STEP 2 right shift the smaller number, e.g., Xm,
    that many
  • positions to form Xm 2
  • EX 1.610ten x 10 0.1610ten x 10
    0.01610ten x 10
  • If we can represent only four
    decimal digits, so the
  • number is really
  • 0.016ten x 10
  • SETP 3 compute Xm 2 Ym EX
    9.999ten
  • 0.016ten
  • 10.015ten
    The sum is 10.015ten x 10

-1
1
Xe-Ye
-1
0
1
1
Xe-Ye
1
6
Floating-Point Addition
  • Basic addition algorithm (continue)
  • if representation demands normalization, then
    normalize
  • STEP 4 left shift result, decrement result
    exponent (e.g.,0.001xx)
  • right shift result, increment
    result exponent (e.g., 101.1xx)
  • EX we pick up the normalized form
  • 10.015ten x 10
    1.0015ten x 10
  • NOTE check overflow or underflow during the
    shift
  • STEP 5 round the mantissa continue until MSB of
    data is 1 (NOTE Hidden bit in IEEE
    Standard)
  • EX we must round the number
  • 1.0015tenx10 1.002
    x 10

1
2
2
2
7
Extra Bits for Accuracy
  • Extra bits during intermediate calculations to
    help rounding, to get closer to actual number
  • Two extra bits on the right in IEEE 754 guard
    and round
  • E.g., base 10 precision 3 bit
  • Guard bits digits to the right of mantissa to
    guard against loss of digits gt can later be
    shifted left into mantissa during normalization
    (especially when the two numbers are very close,
    or when multiplication)
  • Round bits after the guards being shifted into
    mantissa, the result can be rounded according to
    the round bits
  • Sticky bit additional bit to the right of the
    round digit to better fine tune rounding

2-bias
0 2 1.69
1.6900 10 - .0785 10 1.6115 10
2-bias
0 0 7.85
-
2-bias
0 2 1.61
d0 . d1 d2 d3 . . . dp-1 0 0 0 0 . 0 0
X . . . X X X S
X X S
Sticky bit set to 1 if any 1 bits fall off
the end of the round digit

8
Four Rounding Modes
  • Always round up (toward ? )
  • Always round down (toward -?)
  • Truncate
  • Round-to-nearest-even

Round-to- nearest-even(x)
100. 011. 010. 001. 000.
x
00.0 00.1 01.0 01.1 10.0 10.1 11.0 11.1
9
Example with G, R, and S bits
sign exponent
mantissa
GRS A 0 1000 0011(131) 1.1000
0010 1100 0000 0000 000 000 B 0 0111
1111(127) 1.0000 0011 0000 0101 1001 010 000 B
aligned 0 1000 0010(131) 0.0001 0000 0011
0000 0101 100 101 A-B 0 1000 0010(131)
1.0111 0010 1000 1111 1010 011
011 Postnormalization 0 1000 0001(131) 1.0111
0010 1000 1111 1010 011 011
RS Rounding 0 1000 0001(131)
1.0111 0010 1000 1111 1010 011 01 Result
0 1000 0001(131) 1.0111 0010 1000
1111 1010 011 Note1 The original G bit can
serve an R bit, and the original R and S bits
must be ORed in order to generate a
new sticky bit. Note2 If the Boolean
expression RS R SL R (S
L) where L is LSB of the resultant
significand equals 1, we must round
up.
10
Flow of Floating-Point Addition
Start
1. Compare the exponents of the two
numbers. Shift the smaller number to right until
its exponent would match the larger exponent.
2. Add the significands
3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left and
decrementing the exponent.
Overflow or Underflow?
Yes
Exception
No
4. Round the significand to the appropriate
number of bits
Still normalized?
Yes
No
Done
11
Architecture Example
Sign Exponent Significand
Sign Exponent Significand
Small ALU
0 1
0 1
Exponent difference
0 1
Shift right
Control
Big ALU
Increment or Decrement
Shift left or right
Rounding Hardware
Sign Exponent Significand
12
Schedule and score rules
  • Schedule
  • Project 2-1 (deadline on 11/30) Step1 and 2
  • Project 2-2 (deadline on 12/21) Step3
    (Post-normalization)
  • Project 2-3 (deadline on 01/11) Step4
    (Rounding)
  • Score rules
  • (1). Completeness.
  • (2). Modulize.
  • (3). Architecture.
Write a Comment
User Comments (0)
About PowerShow.com