??????%20Practices%20of%20Business%20Intelligence - PowerPoint PPT Presentation

About This Presentation
Title:

??????%20Practices%20of%20Business%20Intelligence

Description:

Practices of Business Intelligence (Data Mining for Business Intelligence) 1022BI06 MI4 Wed, 9,10 (16:10-18:00) (B113) – PowerPoint PPT presentation

Number of Views:208
Avg rating:3.0/5.0
Slides: 106
Provided by: myday
Category:

less

Transcript and Presenter's Notes

Title: ??????%20Practices%20of%20Business%20Intelligence


1
??????Practices of Business Intelligence
Tamkang University
????????? (Data Mining for Business Intelligence)
1022BI06 MI4 Wed, 9,10 (1610-1800) (B113)
Min-Yuh Day ??? Assistant Professor ?????? Dept.
of Information Management, Tamkang
University ???? ?????? http//mail.
tku.edu.tw/myday/ 2014-03-26
2
???? (Syllabus)
  • ?? (Week) ?? (Date) ?? (Subject/Topics)
  • 1 103/02/19 ?????? (Introduction to
    Business Intelligence)
  • 2 103/02/26 ?????????????
    (Management Decision Support System and
    Business Intelligence)
  • 3 103/03/05 ?????? (Business Performance
    Management)
  • 4 103/03/12 ???? (Data Warehousing)
  • 5 103/03/19 ????????? (Data Mining for
    Business Intelligence)
  • 6 103/03/26 ????????? (Data Mining for
    Business Intelligence)
  • 7 103/04/02 ??????? (Off-campus study)
  • 8 103/04/09 ???????????
    (Data Science and Big Data Analytics)

3
???? (Syllabus)
  • ?? ?? ??(Subject/Topics)
  • 9 103/04/16 ???? (Midterm Project
    Presentation)
  • 10 103/04/23 ????? (Midterm Exam)
  • 11 103/04/30 ????????? (Text and Web
    Mining)
  • 12 103/05/07 ?????????
    (Opinion Mining and Sentiment Analysis)
  • 13 103/05/14 ?????? (Social Network
    Analysis)
  • 14 103/05/21 ???? (Final Project
    Presentation)
  • 15 103/05/28 ????? (Final Exam)

4
A Taxonomy for Data Mining Tasks
Source Turban et al. (2011), Decision Support
and Business Intelligence Systems
5
Market Basket Analysis
Source Han Kamber (2006)
6
Association Rule Mining
  • Apriori Algorithm

Source Turban et al. (2011), Decision Support
and Business Intelligence Systems
7
Basic Concepts Frequent Patterns and Association
Rules
  • Itemset X x1, , xk
  • Find all the rules X ? Y with minimum support and
    confidence
  • support, s, probability that a transaction
    contains X ? Y
  • confidence, c, conditional probability that a
    transaction having X also contains Y

Transaction-id Items bought
10 A, B, D
20 A, C, D
30 A, D, E
40 B, E, F
50 B, C, D, E, F
Let supmin 50, confmin 50 Freq. Pat.
A3, B3, D4, E3, AD3 Association rules A ?
D (60, 100) D ? A (60, 75)
A ? D (support 3/5 60, confidence 3/3
100) D ? A (support 3/5 60, confidence
3/4 75)
Source Han Kamber (2006)
8
Market basket analysis
  • Example
  • Which groups or sets of items are customers
    likely to purchase on a given trip to the store?
  • Association Rule
  • Computer ? antivirus_software support 2
    confidence 60
  • A support of 2 means that 2 of all the
    transactions under analysis show that computer
    and antivirus software are purchased together.
  • A confidence of 60 means that 60 of the
    customers who purchased a computer also bought
    the software.

Source Han Kamber (2006)
9
Association rules
  • Association rules are considered interesting if
    they satisfy both
  • a minimum support threshold and
  • a minimum confidence threshold.

Source Han Kamber (2006)
10
Frequent Itemsets, Closed Itemsets, and
Association Rules
  • Support (A? B) P(A ? B)
  • Confidence (A? B) P(BA)

Source Han Kamber (2006)
11
Support (A? B) P(A ? B)Confidence (A? B)
P(BA)
  • The notation P(A ? B) indicates the probability
    that a transaction contains the union of set A
    and set B
  • (i.e., it contains every item in A and in B).
  • This should not be confused with P(A or B), which
    indicates the probability that a transaction
    contains either A or B.

Source Han Kamber (2006)
12
  • itemset
  • A set of items is referred to as an itemset.
  • K-itemset
  • An itemset that contains k items is a k-itemset.
  • Example
  • The set computer, antivirus software is a
    2-itemset.

Source Han Kamber (2006)
13
  • If the relative support of an itemset I satisfies
    a prespecified minimum support threshold, then I
    is a frequent itemset.
  • i.e., the absolute support of I satisfies the
    corresponding minimum support count threshold
  • The set of frequent k-itemsets is commonly
    denoted by LK

Source Han Kamber (2006)
14
  • the confidence of rule A? B can be easily derived
    from the support counts of A and A ? B.
  • once the support counts of A, B, and A ? B are
    found, it is straightforward to derive the
    corresponding association rules A?B and B?A and
    check whether they are strong.
  • Thus the problem of mining association rules can
    be reduced to that of mining frequent itemsets.

Source Han Kamber (2006)
15
Transactional data for an AllElectronics branch
Source Han Kamber (2006)
16
Example Apriori
  • Lets look at a concrete example, based on the
    AllElectronics transaction database, D.
  • There are nine transactions in this database,
    that is, D 9.
  • Apriori algorithm for finding frequent itemsets
    in D

Source Han Kamber (2006)
17
Example Apriori AlgorithmGeneration of
candidate itemsets and frequent itemsets, where
the minimum support count is 2.
Source Han Kamber (2006)
18
Example Apriori Algorithm C1 ? L1
Source Han Kamber (2006)
19
Example Apriori Algorithm C2 ? L2
Source Han Kamber (2006)
20
Example Apriori Algorithm C3 ? L3
Source Han Kamber (2006)
21
The Apriori algorithm for discovering frequent
itemsets for mining Boolean association rules.
Source Han Kamber (2006)
22
Generating Association Rules from Frequent
Itemsets
Source Han Kamber (2006)
23
ExampleGenerating association rules
  • frequent itemset l I1, I2, I5
  • If the minimum confidence threshold is, say, 70,
    then only the second, third, and last rules above
    are output, because these are the only ones
    generated that are strong.

Source Han Kamber (2006)
24
????????????Support Confidence
Source SAS Enterprise Miner Course Notes, 2014,
SAS
25
Support Confidence ????????????????
Checking Account
No
Yes
4,000
No
Saving Account
6,000
Yes
10,000
Lift (SVG ? CK) Confidence/Expected Confidence
0.83/0.85 lt 1
Source SAS Enterprise Miner Course Notes, 2014,
SAS
26
????????????Lift???
  • ???????????????
  • ??? Saving account ? Checking
    account???????????????Checking account????????
  • ???(Lift)???????????????????????
  • Lift (SVG ? CK) Confidence/Expected Confidence
    0.83/0.85 lt 1

Source SAS Enterprise Miner Course Notes, 2014,
SAS
27
Support (A?B) Confidence (A?B)Expected
Confidence (A?B)Lift (A?B)
28
Support (A? B) P(A ? B) A?B ??????/?????Count(A
B)/Count(Total) Confidence (A? B) P(BA) Conf
(A ? B) Supp (A ? B)/ Supp (A) A?B
??????/A????? Count(AB)/Count(A) Expected
Confidence (A?B) Support(B) Count(B) Lift (A ?
B) Confidence (A?B) / Expected Confidence
(A?B) Lift (A ? B) Supp (A ? B) / (Supp (A) x
Supp (B)) Lift (Correlation) Lift (A?B)
Confidence (A?B) / Support(B)
29
Lift (A?B)
  • Lift (A?B) Confidence (A?B) / Expected
    Confidence (A?B) Confidence (A?B) /
    Support(B) (Supp (AB) / Supp (A)) / Supp(B)
    Supp (AB) / Supp (A) x Supp (B)
  • Lift ??? (???)Lift (A?B) 2 ?? A?B ?????????
    2,??????A??????B???,????B ????? (??)?2??

30
?????????????????????
  • ?????????
  • ????????????????
  • ???????????????
  • ???????????????????
  • ??????????,?????????
  • ????????????????????
  • ???????????????
  • ?????????,????

Source SAS Enterprise Miner Course Notes, 2014,
SAS
31
???????????????
Source SAS Enterprise Miner Course Notes, 2014,
SAS
32
???????? (SAS EM ????)Case Study 2 (Association
Analysis using SAS EM) Web Site Usage Associations
33
??????????
34
????
  • ABC??????????????,???????,????????????????????????
    ???????,???????????(music streams)?????(podcasts)?
    ????(news streams)?????(live Web
    )????????(archives)??????????????????????????????
    ?????,??????????????
  • ????????????150??????????

Source SAS Enterprise Miner Course Notes, 2014,
SAS
35
??????
  • ????? webstation.sas7bdat

ARCHIVE ??????
EXTREF ????
LIVESTREAM ??????
MUSICSTREAM ?????
NEWS ????
PODCAST ????
SIMULCAST ????
WEBSITE ??
Source SAS Enterprise Miner Course Notes, 2014,
SAS
36
??????????????
  • ????
  • ???????????,???????????????????????

????
????????? ?????? ????????
Source SAS Enterprise Miner Course Notes, 2014,
SAS
37
SAS Enterprise Miner (SAS EM) Case Study
  • SAS EM ????4??
  • Step 1. ???? (New Project)
  • Step 2. ????? (New / Library)
  • Step 3. ?????? (Create Data Source)
  • Step 4. ????? (Create Diagram)
  • SAS EM SEMMA ????

38
Download EM_Data.zip (SAS EM Datasets) http//mail
.tku.edu.tw/myday/teaching/1022/DM/Data/EM_Data.zi
p
http//mail.tku.edu.tw/myday/teaching.htm
39
Upzip EM_Data.zip to C\DATA\EM_Data
40
Upzip EM_Data.zip to C\DATA\EM_Data
41
VMware Horizon View Clientsoftcloud.tku.edu.twSA
S Enterprise Miner
42
SAS Enterprise Guide (SAS EG)
43
SAS EG New Project
44
SAS EG Open Data
45
SAS EG Open webstation.sas7bdat
46
webstation.sas7bdat
47
webstation.sas7bdat
48
SAS Enterprise Miner 12.1 (SAS EM)
49
SAS EM ????4??
  • Step 1. ???? (New Project)
  • Step 2. ????? (New / Library)
  • Step 3. ?????? (Create Data Source)
  • Step 4. ????? (Create Diagram)

50
Step 1. ???? (New Project)
51
Step 1. ???? (New Project)
52
Step 1. ???? (New Project)
53
SAS Enterprise Miner (EM_Project2)
54
Step 2. ????? (New / Library)
55
Step 2. ????? (New / Library)
56
Step 2. ????? (New / Library)
57
Step 2. ????? (New / Library)
58
Step 2. ????? (New / Library)
59
Step 3. ?????? (Create Data Source)
60
Step 3. ?????? (Create Data Source)
61
Step 3. ?????? (Create Data Source)
62
Step 3. ?????? (Create Data Source)
63
Step 3. ?????? (Create Data Source)
64
Step 3. ?????? (Create Data Source)
DatabaseName.TableName
LibraryName.TableName
EM_LIB.WEBSTATION
65
Step 3. ?????? (Create Data Source)
66
Step 3. ?????? (Create Data Source)
67
Step 3. ?????? (Create Data Source)
68
Step 3. ?????? (Create Data Source)
69
Step 3. ?????? (Create Data Source)
70
Step 3. ?????? (Create Data Source)
71
Step 3. ?????? (Create Data Source)
72
Step 3. ?????? (Create Data Source)
Data Source Attribute Role Transaction
73
Step 3. ?????? (Create Data Source)
74
Step 3. ?????? (Create Data Source)
75
Step 4. ????? (Create Diagram)
76
Step 4. ????? (Create Diagram)
77
Step 4. ????? (Create Diagram)
78
SAS Enterprise Miner (SAS EM) Case Study
  • SAS EM ????4??
  • Step 1. ???? (New Project)
  • Step 2. ????? (New / Library)
  • Step 3. ?????? (Create Data Source)
  • Step 4. ????? (Create Diagram)
  • SAS EM SEMMA ????

79
????????
80
?????? (Sample)
81
EM_Lib.Webstation
82
?????? (Sample)Edit Variable
83
?????? (Sample)Edit Variable - Explore
84
?????? (Sample)Edit Variable - Explore
85
Explore - Association
86
???? (Association Analysis)
87
???? (Association Analysis)
88
???? (Association Analysis)
89
???? (Association Analysis)
90
???? (Association Analysis)
91
???? (Association Analysis)
92
???? (Association Analysis)
93
???? (Association Analysis) Support 1
(Minimum Support 1)
94
???? (Association Analysis)
95
???? (Association Analysis)
96
???? (Association Analysis)??/??/???? (Rules
Table)
97
???? (Association Analysis)Association Rules -
???? (Rules Table)
98
???? (Association Analysis)Association Rules -
???? (Rules Table)
99
???? (Association Analysis)??/??/???? (Link
Graph)
100
???? (Association Analysis)???? (Link Graph)
101
???? (Association Analysis) Maximum Number of
Items 3000000
102
???? (Association Analysis)
103
???? (Association Analysis)Association Rules -
???? (Rules Table)
104
???? (Association Analysis)???? (Link Graph)
105
References
  • Efraim Turban, Ramesh Sharda, Dursun Delen,
    Decision Support and Business Intelligence
    Systems, Ninth Edition, 2011, Pearson.
  • Jiawei Han and Micheline Kamber, Data Mining
    Concepts and Techniques, Second Edition, 2006,
    Elsevier
  • Jim Georges, Jeff Thompson and Chip Wells,
    Applied Analytics Using SAS Enterprise Miner,
    SAS, 2010
  • SAS Enterprise Miner Course Notes, 2014, SAS
  • SAS Enterprise Miner Training Course, 2014, SAS
  • SAS Enterprise Guide Training Course, 2014, SAS
Write a Comment
User Comments (0)
About PowerShow.com