Compact Polarimetry Potentials - PowerPoint PPT Presentation

About This Presentation
Title:

Compact Polarimetry Potentials

Description:

Compact Polarimetry Potentials My-Linh Truong-Lo , Jet Propulsion Laboratory / California Institue of Technology Eric Pottier, IETR, UMR CNRS 6164 – PowerPoint PPT presentation

Number of Views:150
Avg rating:3.0/5.0
Slides: 24
Provided by: MyL92
Learn more at: http://www.grss-ieee.org
Category:

less

Transcript and Presenter's Notes

Title: Compact Polarimetry Potentials


1
Compact Polarimetry Potentials
  • My-Linh Truong-Loï, Jet Propulsion Laboratory /
    California Institue of Technology
  • Eric Pottier, IETR, UMR CNRS 6164
  • Pascale Dubois-Fernandez, ONERA

2
Overview
  • Definition of compact polarimetry mode
  • Calibration of a compact-pol system
  • Simulation of compact-pol data from full-pol raw
    data
  • Estimation of biomass with compact-pol data

3
Issues
  • Compact polarimetry
  • 1 polarization on transmit
  • 2 polarizations on receive
  • What is the best polarization on transmit?
  • What are the best polarizations on receive?
  • How do we analyze the data?
  • Calibration
  • Faraday Rotation
  • Geophysical parameter estimation

4
Background - Example with ALOS system
Mode Swath Resolution Incidence angle
HH 70km 10m 8 60
HH/HV or VV/VH (dual-pol) 70km 20m 8 60
Full polar (quad-pol) 30km 30m 8 30
  • Single polarisation ? large swath and larger
    incidence angle range
  • Full polarisation ? added characterisation
  • Compact polarisation ? full investigation of the
    dual-pol alternative

5
Background - Compact Polarimetry 1/2
  • p/4 mode one transmission at 45 and two
    coherent polarizations in reception (linear H
    V, circular right left,)
  • p/2 mode one circular transmission and two
    coherent polarizations in reception (linear H
    V, circular right left,)
  • Hybrid polarity particular case of p/2 one
    circular transmission and two coherent linear
    polarizations in reception (HV)

6
Background - Compact Polarimetry 2/2
  • ?/4-mode potentials reconstruction of the PolSAR
    information (1)
  • Iterative algorithm based on
  • Reflection symmetry
  • Coherence between co-polarized channels
  • ?/2-mode potentials avoid Faraday rotation in
    transmission (2)
  • Transmit a circular polarized wave
  • Show results about the reconstruction of the
    PolSAR information from ?/2 mode
  • Applications possible (3)
  • Faraday rotation estimate
  • Soil moisture estimate
  • Classification using the conformity coefficient
  • Hybrid polarity potentials decomposition of
    natural targets (4)
  • m-d method based on Stokes parameters
  1. J-C. Souyris, P. Imbo, R. FjØrtoft, S. Mingot and
    J-S. Lee, Compact Polarimetry Based on Symmetry
    Properties of Geophysical Media The ?/4 Mode,
    IEEE Transactions on Geoscience and Remote
    Sensing, vol. 43, no. 3, March 2005.
  2. P. C. Dubois-Fernandez, J-C. Souyris, S.
    Angelliaume and F. Garestier, The Compact
    Polarimetry Alternative for Spaceborne SAR at Low
    Frequency, IEEE Transactions on Geoscience and
    Remote Sensing, vol. 46, no. 10, October 2008.
  3. M-L Truong-Loï, A.Freeman, P. C.
    Dubois-Fernandez and E. Pottier, Estimation of
    Soil Moisture and Faraday Rotation from Bare
    Surfaces Using Compact Polarimetry, IEEE
    Transactions on Geoscience and Remote Sensing,
    vol. 47, no. 11, Nov. 2009.
  4. R. K. Raney, Hybrid-Polarity SAR Architecture,
    IEEE Transactions on Geoscience and Remote
    Sensing, vol. 45, no. 11, November 2007.

7
Overview
  • Definition of compact polarimetry mode
  • Calibration of a compact-pol system
  • Simulation of compact-pol data from full-pol raw
    data
  • Estimation of biomass with compact-pol data

8
Calibration Full-pol system
  • Full-pol system calibration 7 unknowns d1,
    d2, d3, d4, O, f1, f2
  • The S matrix can be recovered
  • Distorsions can be retrieved with measures over
    known targets
  • Trihedral, dihedral, transponder, natural
    targets, etc.

A. Freeman et T. Ainsworth, Calibration of longer
wavelength polarimetric SARs, Proceedings of
EUSAR 2008, Friedrishafen, Allemagne, June
2008. S. Quegan, A Unified Algorithm for Phase
and Cross-Talk Calibration of Polarimetric Data
Theory and Observations, IEEE Transactions on
Geoscience and Remote Sensing, vol. 32, no. 1,
pp. 89-99, January 1994. J. J. van Zyl,
Calibration of Polarimetric Radar Images Using
Only Image Parameters and Trihedral Corner
Reflector Responses, IEEE Transactions on
Geoscience and Remote Sensing, vol. 28, no. 3,
pp. 337-348, May 1990.
9
Calibration Compact-pol system
  • Compact polarimetric system
  • The transmission defects cannot be corrected a
    posteriori
  • System needs to be of high quality before
    transmission
  • With a high-quality transmission ? 4 unknowns d1,
    d2, ?, f1

10
Calibration Compact-pol system
  • Compact polarisation
  • 3 reference targets are necessary
  • Dihedral _at_ 0
  • Dihedral _at_ 45
  • Trihedral
  • Full polarisation
  • More unknowns
  • But less targets are required
  • Natural targets can be used
  • Acquisition of both HV and VH

11
Overview
  • Definition of compact polarimetry mode
  • Calibration of a compact-pol system
  • Simulation of compact-pol data from full-pol raw
    data
  • Estimation of biomass with compact-pol data

12
Simulated compact polarimetric data
  • Simulation of CP data is necessary
  • How do we proceed?
  • Two options
  • From raw data
  • From processed data
  • Comparison between the two approaches

Example of raw data, range spectra HH
13
Building compact polarimetric data
Raw data
Processed data
14
Building CP data - Process 1 / Process 2
15
Compact-pol - Process 2 / Process 2
16
Overview
  • Definition of compact polarimetry mode
  • Calibration of a compact-pol system
  • Simulation of compact-pol data from full-pol raw
    data
  • Estimation of biomass with compact-pol data

17
Backscattering coefficients and biomass RAMSES
P-band data over Nezer forest
18
Biomass estimate Nezer forest
Polarization RMS error (tons/ha) quadratic regression RMS error (tons/ha) exponential regression
HV 5.8 5.7
HV 6.2 6.5
RR 6.6 6.6
RH 12.2 12.8
RMS error 2.6 tons/ha (HV vs HV)
19
Biomass map Nezer forest
20
Biomass map Nezer forest
21
Biomass estimate with HV regression
Using the HV regression as a reference,
computation of the biomass with HV backscattering
coefficient
RMS error20.1 tons/ha Bias19.5 tons/ha
22
Summary systems implications
  • Compact-pol allows
  • To acquire larger swath (versus FP)
  • To access wider incidence angle range (versus FP)
  • To avoid Faraday rotation in transmission (versus
    DP)
  • Calibration
  • A solution with 3 external targets
  • Raw data
  • Equivalence between CP from FP raw data and from
    FP processed data
  • Biomass estimate
  • FP RMS error for HV 5.8 tons/ha
  • CP RMS error for HV reconstructed 6.3 tons/ha
  • CP RMS error for RR 6.6 tons/ha

23
Thank you for your attention
Write a Comment
User Comments (0)
About PowerShow.com