????? (Analyzing Algorithms) - PowerPoint PPT Presentation

About This Presentation
Title:

????? (Analyzing Algorithms)

Description:

Introduction to the Design and Analysis of Algorithms -- A strategic approach, 2E, R.C.T. Lee et. al., ... Introduction to Algorithms, Cormen et. al., MIT Press. – PowerPoint PPT presentation

Number of Views:244
Avg rating:3.0/5.0
Slides: 33
Provided by: Jian1155
Category:

less

Transcript and Presenter's Notes

Title: ????? (Analyzing Algorithms)


1
?????(Analyzing Algorithms)
  • ??
  • ???????? ??Java??, ??? ?, ??????, 2005.
  • Introduction to the Design and Analysis of
    Algorithms -- A strategic approach, 2E, R.C.T.
    Lee et. al., NcGraw Hill, 2005.
  • Introduction to Algorithms, Cormen et. al., MIT
    Press.

2
?????
  • ?????????????????????(resources)?????
  • ??(Resources)???(memory),??(communication),??(ban
    dwidth),??? (logic gate),??(time)

3
?????
  • ???????(running time)???????????????????????
  • ????????????(machine-independent) ???

4
???(Complexity)
  • ??????
  • ?????(time complexity)
  • ?????(space complexity)
  • ????????????????????,
  • ???????,?????????
  • ??????time complexity!

5
????
  • ?????????????????
  • ????(best case)?????????????????????????
  • ????(worst case)?????????????????????????
  • ????(average case)??????????????????????????

6
????????????
  • ??,????????????????(worst-case running time)
  • ??
  • ????????(upper bound)?
  • ??????????
  • ?????????????????????(insertion sort)
    ??????(quadratic function)?

7
????????????
Algorithm Prime1(n)Input????2????nOutputtrue?false(??n????????)for i?2 to n-1 do if (ni)0 then return falsereturn true
  • ??????,????2??????n,?n???,????Prime1???????????(n
    i)???????((ni)0)??n-2???,?????n??????,?n????,???
    ?Prime1??????????????????1?,?????n??????

8
?????????????
  • ??????,????2??????n,?n???,????Prime2???????????(n
    i)???????((ni)0)?? -2???,?????n??????,?n????,?
    ???Prime2??????????????????1?,?????n??????

9
?????Prime1
  • ??,????????,?????(worst case)?,???Prime1??????????
    ????n???????????(best case)?,???Prime1???????????
    ????n????????????,???Prime1?????(linear)
    ?????????(??????????)????(constant) ??????????

10
?????Prime2
  • ?????????,?????(worst case)?,???Prime2????????????
    ????n???????????(best case)?,???Prime2???????????
    ????n????????????,???Prime2??????(square root)
    ?????????????(constant) ??????????

11
????(Asymptotic Notation)
  • ????,???????????(asymptotic notation)??????????,??
    ??????????????????????,???????(problem
    size)???????????
  • ???????????(??????)???,???????(???????)???????(???
    ????)???????????????,??????,????????????????????
  • ??????????(??????)????,??????????????????????????
    ??????????????????????????????,???????????????(???
    ???)??????,??????????????????????????

12
??(Order)
  • ????????????????????,?????????????????(order)?????
    ,???????????????,?????????????????,???????????????
    ?????,??????????????,??????????????????
  • ??,?????????????n-2,??n???(??????)?,?????????????n
    ,?????????(???)??(??????????????????????????????)
    ?????????????35n212n11,??n???(??????)?,?????????
    ????n2,????????????????????28n31245n2162n321,?
    ?n????(???????),?????????????n3(??????)?

13
?O??(Big-O Notation)
  • ???????O??(Big-O notation)??????????,?O???????????
    ???????????(order)???,??????????O?????????

????,?????????????????????,????????????????????????(order),????????O????(O ??order??)?
14
???O??
  • ?????????O??
  • ?? ?O?? (Big-O notation)
  • ?f(n)?g(n)????????????????,????????cgt0??????n0???
    ???n?n0??,f(n)?cg(n)??,????f(n)O(g(n))?(??
    ?f(n)???Big-O of g(n)?,???????????f of n is of
    Big-O of g of n?)?
  • ??,??35n212n11??,??c58?n01(58?351211??),???n
    ?n01?,35n212n11?cn2(58n2)??,??,???35n212n11
    O(n2)?

15
?????(Asymptotic Upper Bound)
  • Def f(n) O(g(n)) ??(upper bound)"
  • iff ? c, n0 ? f(n) ? cg(n) ? n ? n0
  • e.g. f(n) 3n2 2
  • g(n) n2
  • ? n02, c4
  • ? f(n) O(n2)
  • e.g. f(n) n3 n O(n3)
  • e. g. f(n) 3n2 2 O(n3) or O(n100 )

16
?????(Asymptotic Upper Bound)
17
?????(Asymptotic Lower Bound )
  • Def f(n) ?(g(n)) ??(lower bound)
  • iff ? c, and n0, ? f(n) ? cg(n) ? n ?
    n0
  • e. g. f(n) 3n2 2 ?(n2) or ? (n)

18
?????(Asymptotic Lower Bound )
19
Theta??
  • Def f(n) ?(g(n))
  • iff ? c1, c2, and n0, ? c1g(n) ? f(n) ?
    c2g(n) ? n ? n0
  • e. g. f(n) 3n2 2 ? (n2)

20
Theta??
  • f(n) ?(g(n))

21
Theorem
  • ??????f(n) ? g(n),
  • ?

22
????????
  • ?????????????????????????(?????,problem
    size)??????????,??????????????????(?????,execution
    time)??????????,?????????????????,???????????????
    ??,?????????????????????????????????????

23
?????
  • ????????????????????,??????????????,??????????????
    ??
  • O(1) lt O(log n) lt O( ) lt O(n) lt O(n log n) lt
    O(n2) lt O(n3) lt O(2n)O(n!) ? O(nn)

24
??????????O????????
????? ??O???? ??
162 O(1) ?????(constant)??
63log n4 O(log n) ???(??)(sub-linear, logarithmic)??
37 52 O( ) ???(square root)??
n-2 O(n) ??(linear)??
156n81 O(n) ??(linear)??
35n212n11 O(n2) ??(quadratic)??
28n31245n2162n321 O(n3) ??(cubic)??
14?2n457n3248n2-45n81 O(2n) ??(exponential)??
25
???????????????????
log n n n logn n2 n3 2n
0 1.00 1 0 1 1 2
1 1.41 2 2 4 8 4
2 2.00 4 8 16 64 16
3 2.83 8 24 64 512 256
4 4.00 16 64 256 4,096 65,536
5 5.66 32 160 1,024 32,768 4,294,967,296
26
???????????????
27
???????????????(???)
28
???????? vs. ???????
  • ??????????O(p(n))????,???p(n) ????????,???????????
    ???(polynomial time algorithm)?????,?p(n)???????,?
    ?????????????(exponential time algorithm)

29
(No Transcript)
30
(No Transcript)
31
????? (ceiling) ?????? (floor)
32
????(modular operation)
  • ?????a ? ?????n, ??a mod n ? a/n ???
  • a mod n a -?a/n?n.
  • ?(a mod n) (b mod n), ?????? a ? b (mod n)???a
    ?b ?mod n (modulo n)????(equivalent)??
  • ????a ? b (mod n) ?a ?b ?mod n?????????
Write a Comment
User Comments (0)
About PowerShow.com