DNA replication - PowerPoint PPT Presentation

About This Presentation
Title:

DNA replication

Description:

DNA replication Chapter 16 – PowerPoint PPT presentation

Number of Views:147
Avg rating:3.0/5.0
Slides: 81
Provided by: PatB184
Category:
Tags: dna | coli | replication | strain

less

Transcript and Presenter's Notes

Title: DNA replication


1
DNA replication
  • Chapter 16

2
Figure 16.1
3
(No Transcript)
4
History of DNA
  • Griffith
  • Mice Strep
  • Transformation
  • External DNA taken in by cell

5
Experiment
Living R cells(nonpathogeniccontrol)
Mixture of heat-killed S cells andliving R cells
Living S cells(pathogeniccontrol)
Heat-killed S cells(nonpathogeniccontrol)
Results
Mouse dies
Mouse healthy
Mouse dies
Mouse healthy
Living S cells
6
History of DNA
  • Hershey-Chase
  • Bacteriophages
  • Supported heredity information was DNA

7
Bacteriophages
8
(No Transcript)
9
Figure 16.4
Experiment
Batch 1 Radioactive sulfur (35S) in phage protein
Labeled phagesinfect cells.
Agitation frees outsidephage parts from cells.
Centrifuged cellsform a pellet.
Radioactivity(phage protein)found in liquid
Radioactiveprotein
Centrifuge
Pellet
Batch 2 Radioactive phosphorus (32P) in phage DNA
RadioactiveDNA
Centrifuge
Radioactivity (phageDNA) found in pellet
Pellet
10
History of DNA
  • Franklin
  • X-ray diffraction
  • Double helix
  • Watson-Crick
  • Double helix model

11
History of DNA Duplication
  • Meselson and Stahl
  • Bacteria
  • 14N and 15N
  • Semiconservative method.

12
Fig. 16-10
First replication
Second replication
Parent cell
(a) Conservative model
(b) Semiconserva- tive model
(c) Dispersive model
13
Figure 16.11
Experiment
Bacteria cultured in medium with 15N(heavy
isotope)
Bacteria transferred to medium with 14N(lighter
isotope)
Results
DNA samplecentrifugedafter firstreplication
DNA samplecentrifugedafter secondreplication
Less dense
More dense
Conclusion
Predictions
First replication
Second replication
Conservativemodel
Semiconservativemodel
Dispersivemodel
14
DNA structure
15
Nucleic acid structure
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • Nucleotides

16
Nucleotide structure
  • 1. 5 carbon sugar (ribose)
  • 2. Phosphate
  • 3. Nitrogenous base

17
Nucleotide structure
18
Nitrogenous base
  • Purines (2 rings)
  • Adenine(A) Guanine(G)
  • Pyrimidines (1 ring)
  • Cytosine (C), Thymine (T) DNA only
  • Uracil (U) RNA only

19
(No Transcript)
20
Phosphodiester bondLinks 2 sugars (nucleotides)
21
(No Transcript)
22
Nucleic acids
  • 5 Phosphate group (5C) at one end
  • 3 Hydroxyl group (3C) at the other end
  • Sequence of bases is expressed in the 5 to 3
    direction
  • GTCCAT 5pGpTpCpCpApT---OH 3

23
Double helix
  • Complementary
  • Sequence on one chain of DNA
  • Determines sequence of other chain
  • 5-ATTGCAT-3
  • 3-TAACGTA-5

24
(No Transcript)
25
Double Helix
  • Complementary
  • Purines pair with pyrimidines
  • Diameter of base pairs are the same
  • Adenine (A) forms 2 hydrogen bonds with Thymine
    (T)
  • Guanine (G) forms 3 hydrogen bonds with cytosine
    (C)

26
Double Helix
  • Sugar-phosphates are the backbone
  • Complementary
  • Phosphodiester bonds
  • Strands are antiparrellel
  • Bases extend into interior of helix
  • Base-pairs form to join the two strands

27
(No Transcript)
28
Fig. 16-7
5? end
Hydrogen bond
3? end
1 nm
3.4 nm
3? end
0.34 nm
5? end
(b) Partial chemical structure
(a) Key features of DNA structure
29
(No Transcript)
30
(No Transcript)
31
Duplication
  • DNA unzips-breaks hydrogen bonds
  • New strand forms based on existing strand
  • Old strand is saved
  • Compliment of new strand
  • New DNA-one old strand one new strand
  • Semiconservative replication

32
Fig. 16-9-3
A
A
T
T
A
T
T
A
C
C
G
G
G
C
G
C
A
T
A
A
T
A
T
T
T
T
A
T
T
A
A
A
C
C
G
C
C
G
G
G
(c) Daughter DNA molecules, each consisting of
one parental strand and one new strand
(b) Separation of strands
(a) Parent molecule
33
(No Transcript)
34
(No Transcript)
35
Duplication Enzymes
  • DNA helicase
  • Enzyme opens helix starts duplication
  • Separates parental strands
  • Single-strand binding protein
  • Binds to unpaired DNA
  • After separation
  • Stabilizes DNA

36
Duplication Enzymes
  • DNA polymerases
  • Help lengthen new strand of DNA
  • Adds new nucleotides strand
  • Synthesis occurs only one direction
  • 5 to 3
  • Adding new nucleotides to the 3OH

37
Duplication Enzymes
  • Primer
  • Section of RNA
  • Complementary to the parental DNA
  • Synthesis occurs only one direction
  • 5 to 3
  • DNA primase
  • Enzyme creates the primer

38
Duplication Enzymes
  • Topoisomerase
  • Relieves strain of unwinding DNA
  • DNA pol1
  • Removes primers
  • Replaces with DNA nucleotides
  • DNA ligase
  • Creates phosphodiester bonds between Okazaki
    fragments

39
(No Transcript)
40
Table 16.1
41
Duplication
  • OriC
  • Origins of replication
  • Starting point in DNA synthesis
  • Replication is bidirectional
  • Proceeds in both directions from origin
  • 5to 3direction

42
Duplication
  • E coli (bacteria)
  • Circular DNA
  • One origin
  • Eurkaryotes
  • Multiple origins

43
Origins of Replication
44
(No Transcript)
45
Duplication
  • Replication bubble
  • Separation of strands of DNA
  • Replication of DNA
  • Replication fork
  • Y-shaped region
  • End of replication bubble
  • Site of active replication

46
Duplication
47
(No Transcript)
48
Duplication
49
DNA Replication Overview
50
Duplication
  • Leading strand
  • DNA continuous 5 to 3 replication (towards
    fork)
  • Template is 3 to 5
  • Lagging strand
  • DNA duplicated in short segments (away from fork)
  • Okazaki fragments
  • Short stretches of new DNA-lagging side

51
Duplication
  • Unzips (helicase, single-strand binding protein,
    topoisomerase)
  • Primer
  • DNA polymerase (5to3)
  • DNA ligase

52
(No Transcript)
53
Duplication
54
(No Transcript)
55
Fig. 16-14
New strand 5? end
Template strand 3? end
5? end
3? end
Sugar
T
A
A
T
Base
Phosphate
C
G
G
C
G
G
C
C
DNA polymerase
3? end
A
A
T
T
3? end
C
C
Pyrophosphate
Nucleoside triphosphate
5? end
5? end
56
Leading Strand
57
Fig. 16-13
Primase
Single-strand binding proteins
3?
Topoisomerase
5?
3?
RNA primer
5?
5?
3?
Helicase
58
Fig. 16-15b
Origin of replication
3?
5?
RNA primer
5?
Sliding clamp
3?
5?
DNA pol III
Parental DNA
3?
5?
5?
3?
5?
59
Fig. 16-16a
Overview
Origin of replication
Leading strand
Lagging strand
Lagging strand
2
1
Leading strand
Overall directions of replication
60
Lagging Strand
61
Fig. 16-17
Overview
Origin of replication
Lagging strand
Leading strand
Leading strand
Lagging strand
Single-strand binding protein
Overall directions of replication
Helicase
Leading strand
DNA pol III
5?
3?
3?
Primer
Primase
5?
Parental DNA
3?
Lagging strand
DNA pol III
5?
DNA pol I
DNA ligase
4
3?
5?
3
1
2
3?
5?
62
Fig. 16-16
Overview
Origin of replication
Lagging strand
Leading strand
Lagging strand
2
1
Leading strand
Overall directions of replication
5?
3?
3?
5?
Template strand
RNA primer
3?
5?
3?
1
5?
3?
Okazaki fragment
5?
3?
1
5?
5?
3?
3?
2
5?
1
5?
3?
3?
5?
1
2
5?
3?
3?
5?
1
2
Overall direction of replication
63
(No Transcript)
64
Figure 16.18
Leading strand template
DNA pol III
Leading strand
Parental DNA
5'
3'
3'
5'
3'
3'
5'
5'
Connecting protein
Helicase
DNA pol III
3'
5'
Lagging strandtemplate
Lagging strand
3'
5'
65
Duplication
66
Duplication
67
Duplication
  • Telomers
  • Sequences at ends of chromosomes
  • Short nucleotide sequences
  • Repeated 100-1000 times
  • Prevents 5 end erosion
  • Telomerase
  • Enzyme that lengthens telomers
  • Usually in germ cells

68
(No Transcript)
69
Repairs
  • Mismatched pair
  • Duplication error
  • Enzymes remove error
  • Nucleotide excision repair
  • Damaged section removed
  • Nuclease
  • New nucleotides fill gap
  • Complement DNA section not damaged

70
Figure 16.19-3
5'
3'
3'
5'
Nuclease
5'
3'
3'
5'
DNApolymerase
5'
3'
5'
3'
DNAligase
3'
5'
3'
5'
71
Chromosome packaging
  • Chromatin
  • Complex composed of DNA and proteins
  • 40 DNA 60 protein
  • Heterochromatin
  • More compacted chromatin
  • Euchromatin
  • Loosely packed chromatin

72
Figure 16.23
5 µm
73
Chromosome packaging
  • Double helix
  • Histones proteins
  • Nucleosome DNA coiled around 8 histones (10nm)
  • Nucleosomes then coil (30nm)
  • Looped domains attach to chromosome scaffold
    (300nm)
  • Domains coil form chromosome

74
Figure 16.22
Chromatid(700 nm)
Nucleosome(10 nm in diameter)
DNAdouble helix(2 nm in diameter)
30-nm fiber
Scaffold
Loops
H1
Histone tail
300-nmfiber
Histones
DNA, thedouble helix
Nucleosomes,or beads ona string(10-nm fiber)
Histones
30-nm fiber
Replicatedchromosome(1,400 nm)
Loopeddomains(300-nm fiber)
Metaphasechromosome
75
Figure 16.22a
Nucleosome(10 nm in diameter)
DNAdouble helix(2 nm in diameter)
H1
Histone tail
Histones
DNA, thedouble helix
Histones
Nucleosomes, or beads ona string (10-nm fiber)
76
Figure 16.22b
Chromatid(700 nm)
30-nm fiber
Loops
Scaffold
300-nm fiber
30-nm fiber
Replicatedchromosome(1,400 nm)
Looped domains(300-nm fiber)
Metaphasechromosome
77
(No Transcript)
78
(No Transcript)
79
(No Transcript)
80
DNA Packing
Write a Comment
User Comments (0)
About PowerShow.com