Title: A Numerical Method for
1A Numerical Method for Discontinuous Shallow Flow
Fritz R. FiedlerUniversity of Idaho Department
of Civil Engineering
2Model Objectives
- Solve 2-D hydrodynamic flow equations
- surface flow, rainfall, infiltration
- stiff hyperbolic equations
- non-linear source term
- Applications
- rainfall-runoff process
- wetlands
- flood plains
3Overland Flow
4Microtopography
5Equations
6Numerical Challenges
- Non-linear hyperbolic system
- Strong source terms
- (equations stiff when h0)
- Small depths / dry areas
- Large gradients
- Discontinuous flow regime
7Vector Form
8Vector Form
9Approach
- Select basic numerical scheme
- Modify basic scheme to address problem-specific
challenges - Develop algorithm
- Develop code
- Test
- Iterate? (start simple)
10MacCormack Scheme
Predictor, Backward Difference
Corrector, Forward Difference
11Split MacCormack Scheme
Lx1 Operator
12Friction Slope stiff!
13Friction Slope Point-Implicit Treatment
14Convective Acceleration Upwinding
For the Lx1 operator
If flow is in the -x direction (j1 to j)
15Smoothing Function
16Lateral Inflow and Infiltration
17Algorithm
- Input
- Define grid
- Initialize
- Solve
- time loop
- compute lateral inflow (Newtons Method)
- compute h, p, q
- output?
18Computer Code
do 102 j1,Nx-1 delh1(j,k) -
dtohx(pc(j,k)-pc(j-1,k))dt0.5re(j,k)
delp1(j,k) - D(j,k)dtohx
(convacc(j,k) ghc(j,k)2 - ghc(j-1,k)2)
- D(j,k)dt (
g(hc(j,k)hc(j-1,k))(z(j,k)-z(j-1,k))/hx
Ko0.01pc(j,k)/8./hc(j,k)2
pc(j,k)/hc(j,k)re(j,k) )
D(j,k)dt/hx2eps1(pc(j-1,k)-2.pc(j,k)
pc(j1,k)) delq1(j,k) - dtohx
( pc(j,k)qc(j,k)/hc(j,k)
-pc(j-1,k)qc(j-1,k)/hc(j-1,k) )
dt/hx2eps1(qc(j-1,k)-2.qc(j,k)
qc(j1,k)) 102 continue
19Comparative Numerical Examples
- Dam Break Problem
- Published results
- Physical Model Results
20Dam Break Problem
21Kinematic Wave Solution
22Microtopographic Surface
23Overland Flow Depths
24Flow Depths and Velocity
25Flow Channels
26Overland Flow Depths
27Cumulative Infiltration
28Simulated vs. Experimental
29(No Transcript)