Title: Options Introduction
1Call and put option contracts Notation Defini
tions Graphical representations (payoff
diagrams)
Finance 30233, Fall 2007 Advanced Investments S.
Mann The Neeley School at TCU
2Right, but not the obligation, to either buy or
sell at a fixed price over a time period
(t,T) Call option - right to buy at fixed
price Put option - right to sell at fixed
price fixed price (K) strike price, exercise
price (K X in BKM) selling an option write
the option
Notation call value (stock price, time
remaining, strike price) c ( S(t) , T-t,
K) at expiration (T) c (S(T),0,K)
0 if S(T) lt K S(T) - K if S(T) ?
K or c(S(T),0,K) max (0,S(T) - K)
3 Call moneyness
Call value
0
K asset price (S)
Out of the money in the money (S lt
K) (S gt K)
Put moneyness
Put value
0
K asset price (S)
in the money out of the money (S lt K) (S gtK)
4c (S(T),0,K) 0 S(T) lt K
S(T) - K S(T) ? K
Value 5 0
Call value max (0, S(T) - K)
K (K5) S(T)
5- Short position in Call value at maturity
c (S(T),0,K) 0 S(T) lt K
S(T) - K S(T) ? K short is opposite -c(S(T),0
,K) 0 S(T) lt K -S(T)-K
S(T) ? K
Value 0 -5
Short call value min (0, K -S(T))
K (K5) S(T)
6Call value at T c(S(T),0,K) max(0,S(T)-K)
Value 0
Call profit
Profit c(S(T),0,K) - c(S(t),T-t,K)
Breakeven point
K S(T)
Profit is value at maturity less initial price
paid.
7(No Transcript)
8 p(S(T),0,K) K - S(T) S(T) ? K
0 S(T) gt K
Value 5 0
Put value max (0, K - S(T))
(K-5) K S(T)
9- Short put position value at maturity
p(S(T),0,K) K - S(T) S(T) ? K
0 S(T) gt K short is opposite -p(S(T),0,K)
S(T) - K S(T) ? K 0 S(T) gt K
Value 0 -5
Short put value min (0, S(T)-K)
(K-5) K S(T)
10Value 0
Put value at T p(S(T),0,K) max(0,K-S(T))
put profit
Profit p(S(T),0,K) - p(S(t),T-t,K)
Breakeven point
K S(T)
Profit is value at maturity less initial price
paid.
11Option values at maturity (payoffs)
long put
long call
0
0
K
K
short call
short put
0
0
K
K
12- European Put-Call parity Asset plus Put
Asset
K
K
K
K S(T)
Put
Asset plus European put S(0) pS(0),TK
K
13- European Put-Call parity Bond plus Call
Bond
K
K
K
K S(T)
Call
0
Bond European Call cS(0),TK KB(0,T)
K
14 Value at expiration Position cos
t now S(T) ? K S(T) gt K Portfolio A Stock
S(0) S(T) S(T) put pS(0),TK K -
S(T) 0 total A S P K S (T)
Portfolio B Call cS(0),TK 0 S(T) -
K Bill KB(0,T) K K total B C
KB(0,T) K S(T)
European Put-Call parity S(0) pS(0),TK
cS(0),TK KB(0,T)
15 Bull Spread value at maturity
S(0) 50 value at maturity position S(T)?
45 45 ? S(T)? 50 S(T) gt 50 Long call with
strike at 45 0 S(T) - 45 S(T) -45 Short
call w/ strike at 50 0 0 - S(T) -
50 net 0 S(T) -45 5
10 5 0
Position value at T
40 45 50 55 60 S(T)
16 Bear Spread value at maturity
S(0) 30 value at maturity position S(T)
? 25 25 ? S(T) ? 35 S(T) gt35 Long call with
strike at 35 0 0 S(T) -35 Short call w/
strike at 25 0 -S(T) - 25 - S(T)
-25 net 0 25 - S(T) -10
0 - 5 -10
Position value at T
20 25 30 35 40 S(T)
17 Butterfly Spread value at maturity
S(0) 50 value at maturity position
S(T)? 45 45 ? S(T ? 50 50 ? S(T) ? 55
S(T) gt 55 Long call , K 45 0 S(T) -
45 S(T) - 45 S(T) - 45 Short 2 calls, K
50 0 0 -2 S(T) - 50 -2S(T) - 50 Long call
, K 55 0 0 0 S(T) -
55 net 0 S(T) -45 55 - S(T)
0
10 5 0
Position value at T
40 45 50 55 60 S(T)
18Straddle value at maturity
S(0) 25 value at maturity position S(T)
? 25 S(T) gt 25 Long call, K 25
0 S(T) - 45 Long put , K 25 25 - S(T)
0 net 25 - S(T) S(T) - 25
10 5 0
straddle
Position value at T
Bottom straddle
15 20 25 30 35 S(T)
Bottom straddle call strike gt put strike put
K 23 call K 27