Fast Method of Fundamental Solution - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

Fast Method of Fundamental Solution

Description:

Fast Method of Fundamental Solution Xinrong Jiang, PhD candidate Wen Chen, Prof. C.S. Chen, Prof. NTU, Dec. 8, Taipei Hohai University Outline Motivation Methodology ... – PowerPoint PPT presentation

Number of Views:74
Avg rating:3.0/5.0
Slides: 22
Provided by: xxk
Learn more at: https://www.usm.edu
Category:

less

Transcript and Presenter's Notes

Title: Fast Method of Fundamental Solution


1
Fast Method of Fundamental Solution
  • Xinrong Jiang, PhD candidate
  • Wen Chen, Prof.
  • C.S. Chen, Prof.
  • NTU, Dec. 8, Taipei

Hohai University
2
Outline
  • Motivation
  • Methodology
  • Numerical Example
  • Conclusion

3
Motivation

  • Radial Basis Functions (RBFs)
  • Domain Type
  • Kansas Method
  • Local Method of Particular Solution (LMPS)
  • Boundary Type
  • Method of Fundamental Solution (MFS)
  • Regularized Meshless Method (RMM)
  • Boundary Knot Method (BKM)
  • Boundary Particle Method (BPM)
  • Singular Boundary Method (SBM)

4
Motivation
  • Dense Matrix
  • Large-scale problem
  • Infinite domain
  • Speed up _ iterative method
  • Mainframe T_T
  • expensive, computer volume large, electricity
  • PC T_T
  • Memory, CPU flops

5
Motivation
  • Fast algorithm
  • Save memory
  • Fast computing
  • Efficiency ? Accuracy

6
Methodology
  • Fast Multipole Method (FMM)
  • 1987, 1997 new version, Rokhlin and Greengard
  • Nlog(N)-gtN
  • Adaptive
  • Fast Fourier Transform (FFT)
  • Precorrected FFT, J White
  • Nlog(N)
  • Uniform
  • Hierarchical Matrix,Adaptive Cross-Approximation,
    etc

7
Methodology
collocation, source Points N Matrix NN
8
(No Transcript)
9
Methodology
  • Iterative Method
  • ill-conditioned

10
Methodology
  • Krylov Subspace methodGMRES
  • Generalized minimal residual method
  • FMM-BEM
  • Fail in FMM-MFS
  • Iterator open issue

11
MFS
  • easy-to-program, exponential convergence,
    highly accuracy, geometric flexibility and so
    on
  • infinite domain problems, large deformation
    problems, dynamic crack propagation
  • etc

FMM-MFS
12
Numerical Examples
13
Numerical Examples
14
Numerical Examples
15
Numerical Examples
16
Numerical Examples
17
GPU
  • Further acceleration

18
GPUCUDA
  • CUDA Compute Unified Device Architecture

19
Parallel
  • Tree Structure
  • Further Study

20
Conclusion
  • FMM-MFS
  • implement successfully
  • high precision and speed
  • high wave number requires wide band
  • high frequency
  • large domain with low frequency
  • ill-conditioned requires suitable iterative
    method

21
  • End
  • Thanks for your attention!
  • Comments?
  • ???
  • Xinrong Jiang
  • hhujiangxr_at_163.com
  • 08/12/ 2011
Write a Comment
User Comments (0)
About PowerShow.com