Title: Chapter%206%20Basic%20Computability%20???????????????????
1Chapter 6Basic Computability???????????????????
- K. H. Rosen, Discrete Mathematics and Its
Applications, 5th Edition, McGraw-Hill. - A. V. Aho and J. D. Ullman, Foundations of
Computer Science, C Edition, W.H. Freeman. - J. Martin, Introduction to Languages and the
Theory of Computation, 3rd Edition, McGraw-Hill. - M. Sweat, CS4710 CS for Bioinformatics, College
of Computing, Georgia Tech. USA.
1/2552 204111
2Outline
- Finite State Machines (?????????????????)
- Turing Machines (?????????????)
3Finite State Machines
- Topics
- State Machines and Automata
- Graph Representing State Machines
46.1 State Machines and Automata
- ???????????????????? (Pattern) ???????????????????
?? - ???? ?????????????? ? ?????????? a,e,i,o,u
???????????????????????????? 5 ??????????????? - abstemious
- facetious
- sacrilegious
- ??????????????????????????????????????????????????
????????????????? (State) ??????????????????????
???????????????????
5 main procedure print testWord(abstemious,
10) end main procedure testWord(word, n)
i 0 if (findChar(word, a, i, n)
/state 1/ if (findChar(word,e, i,
n) /state 2/ if (findChar(word,i,
i, n) /state 3/ if
(findChar(word,o, i, n) /state 4/
if (findChar(word,u, i, n) /state 5/
return true return false end
procedure procedure findChar(word, ch, i,
n) while (i lt n and wordi ! ch) i
i1 end while if (in) return
false else i return true
end if end procedure
66.1 State Machines and Automata
- ????????????????????????????? Directed
Graph????????? - ????? node ??? ???????????????
- arc ?????????????????????????????????????????
(Transitions) ????????????????????????????????
label ??????? ???? - ??????????????? 0 ???? 1 ????????????? a
- ? (Lambda) ??? ?????????????????????? A-Z, a-z
- ??????? ?-a ??? ???????????????????????? a
?-a
?-e
?-i
?-o
?-u
start
a
e
i
o
u
0
1
2
3
4
5
76.1 State Machines and Automata
- ?????????????? node ??????? ????????? pattern
???????????? ???????? accepting state
??????????????????? - ???? node ??????????? start state
????????????????????????????? - ??????????????? Finite Automaton ???? Automaton
?-a
?-e
?-i
?-o
?-u
start
a
e
i
o
u
0
1
2
3
4
5
86.1 State Machines and Automata
- ??????????? Automaton
- Automaton ????????????????????? ???? input
sequence - ????????????????? Start State ????????????????????
????? input sequence - ?????????????????? (input) ??????????????
Transition ??????????? - ?????????????????????????? ?????? State ????
- ??????????????????????? ??????????? State ?????
- ??????????? Automaton ???????????????????
??????????????????????? ? ???????????? input
sequence - ????????????????????? Automaton ??????? Accepting
State
96.1 State Machines and Automata
- ??????????? 1 ???????? String ???????????????????
???? 0 ??? 1 ???????? ?????? ????? Automaton
???????????? Pattern ??
(????????????? Automaton ??????? Accepting State)
1
0
(?)
0
start
1
String ?? ? ????????????? 0
106.1 State Machines and Automata
0
(?)
1
c
0
start
0
a
b
1
1
0
d
1
String ?? ? ????????????? 00 ???? 01
116.1 State Machines and Automata
(?)
0
1
1
start
1
a
b
c
0
0
String ?? ? ????????????? 11
126.1 State Machines and Automata
(?)
odd even
0
1
0
1
even even
odd odd
1
0
1
0
even odd
String ?? ? ????? 0 ???????????? ????? 1
????????????
136.2 Definition of a Finite Automaton
- A finite automaton, or finite-state machine
(abbreviated FA) is a 5-tuple (Q,?,q0, A,?),
where - Q is a finite set (whose elements we will
think of as state) - ? is a finite alphabet of input symbols
- q0 ? Q (the initial state)
- A ? Q (the set of accepting states)
- ? is a function from Qx? to Q (the transition
function). - For any element q of Q and any symbol a ? ?, we
interpret ?(q, a) as the state to which the FA
moves, if it is in state q and receives the input
a.
? - sigma, ? - delta
146.3 Finite-State Machines with Output
- ??????????????????????????????? 20 ??? ???
??????????????? 5, 10
??? - ?????????????????????? 20 ??? ????????????????????
?????????? - ????????????????????????? 20 ???
??????????????????????????
?????????????????????????????????????????????
???????????????????????????????????????? - ??????????????????????????????????????????????????
????????????? ????????????????????????????????
????????????? combination
????????????????????????????????
15State Table ??????????????????????????????? State Table ??????????????????????????????? State Table ???????????????????????????????
Next State Output
Input Input
State 5 10 O R 5 10 O R
S0
S1
S2
S3
S4
S0 ??????????????????????????????????????????? Si
????????????? ? ????? FA ????????? Input
??????????????? 5, 10, ???????-O,
???????-R Output ??????????????? 5, 10,
?????????????-OJ, ?????????????????-AJ n ???
nothing ?????????????
166.3 Finite-State Machines with Output
s0
State Diagram
17Exercise
- ?????? State Diagram ??? State Table ???
State Table State Table State Table
f G
Input Input
State 0 1 0 1
S0 S1 S0 1 0
S1 S3 S0 1 1
S2 S1 S2 0 1
S3 S2 S1 0 0
18Exercise
- ?????? State Table ??? State Diagram ???
State Table State Table State Table
f G
Input Input
State 0 1 0 1
S0 S1 S3 1 0
S1 S1 S2 1 1
S2 S3 S4 0 0
S3 S1 S0 0 0
S4 S3 S4 0 0
196.3 Exercise
- ????????? Automaton ???????????????? String 0 ???
1 - ????????????????????????????????????????? 1
???????????????????? (Accepting State ????? 1
??????????) - ????????????? string ?????? ?????? 1
?????????????? 2 ????????????????? ???? 11
????????? 111 ????????? - ????????? Automaton ??????????????????? String ??
? (A-Z ??? a-z) - ???????????????????????????? (Accepting State)
???????????????????????????? end
206.3 Exercise
- ????????? FA ?????????????????????????????????????
????????????????????????? 1, 2, 5, ??? 10 ???
???????????????????????? 8 ???
?????????????????????????? ??????????????????????
?????????? ???????????????????????????????????????
???????????????????
216.3 Exercise
- ????????? FA ?????????????????????????????
????????????????????????? 1, 2, 5, ??? 10 ???
?????????????????????????? 6 ???
??????????????????????????????????????
??????????????????????????????????????????????????
? ????????????????????????????????????????????????
????????????????????????????????????????????
22Turing Machines
23Turing Machines
Alan Turing 1912-1954
246.4 Turing Machines
- ??????????? Finite-State Automata ???
- ???????????????????? (state) ????????
- ??????????????????? FA ???????????????????????????
??????????????????????????? - ???? if (a10 gt b10) then ... ??????????????
- ?????.?. 1936 Alan Turing ??????? Abstract
Machine ??????????????? Turing Machine (TM) - ??????????????????????????????????????????????
- ??????????????????????????????????????????????????
????????
256.4 Turing Machines
- TM ???????????????????????????????????????????????
?????????????? ???????? ?????? (Tape head) - ???????????????????? ?????????????????????????????
?? - ?????????????????? ? ??????????????????
- ??????????????? TM ???????? state ?? state
????????? ??????????? State ???????????????
(Unique)
Tape
Symbol
Tape head
266.4 Example 1
Time 0
......
......
Time 1
......
......
1. Reads
2. Writes
3. Moves Left
27Time 1
......
......
Time 2
......
......
1. Reads
2. Writes
3. Moves Right
286.4 Turing Machines
- TM ??????? output ????? ???????? Accepting state
- ?????? State ?????? ?? State ??????? 2 ????
?????? - Initial State ???? state ????????
- Halt State ???????????????
296.4 Turing Machines
- Halt State ????????
- final (ha)
- ???????????????????????????????? accept
- halting (hr)
- ???????????????????????????????? reject
- ???????????????????? accept ???? reject ??? input
string ????????????????????????
state ?????????? ????????????????????????????????
?? - hr ????????????????????????????????????? (crash)
?????????? ???? ?????????????????????? ???????
306.4 Turing Machines
- ??????????? TM ???????????????????????????????????
??????????????? ????????????????????? - ??????????????????????
- ?????????????????????????????? (??????????????????
??) - ?????????????????????????
- ?????????????????????????? ??????? ??????????????
- ????????? state ?????
- ??????????????????????????????????????????????????
?????????????????? ?????????????????? state
???????????????????????????????????????????
316.4 ??????????? 2
- TM ???????????????????????
326.4 ??????????? 2
336.4 ??????????? 2
346.4.1 5-Tuple Definition
- A Turing machine (TM) is a 5-tuple
T(Q,?,?,q0,?), where - Q is a finite set of states, assume not to
contain ha or hr, the two halting states (the
same symbols will be use for the halt states of
every TM) - ? and ? are finite sets, the input and tape
alphabets, respectively, with ? ? ? ? is assumed
not to contain ?, the blank symbol - q0, the initial state, is an element of Q
- ? Q x (???) ? (Q ? ha, hr)x (???)xR,L,S
is a partial function (that is,
possibly undefined at certain points).
? - sigma, ? - gamma, ? - delta
356.4.1 5-Tuple Definition
- For elements q?Q, r?Q ? ha, hr, X,Y????, and
D?R,L,S, we interpret the formula - ?(q, X) (r, Y, D)
- when T is in state q and the symbol on the
current tape square is X, - the machine replaces X by Y on that square,
- changes to state r, and
- either moves the tape head one square right,
moves it one square left (if the tape head is not
already on the leftmost square), or leaves it
stationary, depending on whether D is R, L, or S,
respectively. - When r is either ha or hr, we say that T is
halts. - Once it has halted, it cannot move further, since
? is not defined at any pair (ha, X) or (hr,X).
366.4.1 5-Tuple Definition
- We permit the machine to crash by entering the
reject state in case it tries to move the tape
head off the left end of the tape. - This is the way for the machine to halt that is
not reflected by the transition function ?. - If the tape head is currently on the leftmost
square, the current state and tape symbol are q
and a, respectively, and ?(q, a) (r, b, L), - we will say that the machine leaves the tape head
where it is, replaces the a by b, and enters the
state hr instead of r.
376.4.2 Transition Function
- ???????? TM ?????? state ?? ? (s)
???????????????????????????????????????? x
??????? Partial Function (f) ??? (s,x) - f(s,x) (s,x,d)
- ???????????
- ??????????? state s
- ?????????????? x ?????????????????????????? x
- ??????????????????????????????? d (???? L ??? R
?????????????? S) - ???????????? (s, x, s, x, d)
- ??? f ???????????????? (s,x) ??????? TM halt
386.4.2 Transition Function
- ???????? ?????????????????? TM T ?????????????
Transition Function ???????? - (s0,0,s0,0,R), (s0,1,s1,1,R), (s0,B,s3,B,R)
- (s1,0,s0,0,R), (s1,1,s2,0,L), (s1,B,s3,B,R)
- (s2,1,s3,0,R)
- state input next state write
direction - s0 0 s0 0 R
- s0 1 s1 1 R
- s0 B s3 B R
- s1 0 s0 0 R
- s1 1 s2 0 L
- s1 B s3 B R
- s2 1 s3 0 R
396.4.2 Transition Function
(s0,0,s0,0,R), (s0,1,s1,1,R), (s0,B,s3,B,R) (s1,0,
s0,0,R), (s1,1,s2,0,L), (s1,B,s3,B,R) (s2,1,s3,0,R
)
(s0,0,s0,0,R)
- ??? Initial State (s0)
- ??????????????????????????????????????????????????
?????????????????? Blank (B)
406.4.2 Transition Function
(s0,0,s0,0,R), (s0,1,s1,1,R), (s0,B,s3,B,R) (s1,0,
s0,0,R), (s1,1,s2,0,L), (s1,B,s3,B,R) (s2,1,s3,0,R
)
(s0,0,s0,0,R)
(s0,1,s1,1,R)
B
B
0
1
0
1
1
0
B
B
416.4.2 Transition Function
(s0,0,s0,0,R), (s0,1,s1,1,R), (s0,B,s3,B,R) (s1,0,
s0,0,R), (s1,1,s2,0,L), (s1,B,s3,B,R) (s2,1,s3,0,R
)
(s0,1,s1,1,R)
(s1,0,s0,0,R)
B
B
0
1
0
1
1
0
B
B
426.4.2 Transition Function
(s0,0,s0,0,R), (s0,1,s1,1,R), (s0,B,s3,B,R) (s1,0,
s0,0,R), (s1,1,s2,0,L), (s1,B,s3,B,R) (s2,1,s3,0,R
)
(s0,1,s1,1,R)
(s1,0,s0,0,R)
B
B
0
1
0
1
1
0
B
B
436.4.2 Transition Function
(s0,0,s0,0,R), (s0,1,s1,1,R), (s0,B,s3,B,R) (s1,0,
s0,0,R), (s1,1,s2,0,L), (s1,B,s3,B,R) (s2,1,s3,0,R
)
(s0,1,s1,1,R)
(s1,1,s2,0,L)
B
B
0
1
0
1
1
0
B
B
446.4.2 Transition Function
(s0,0,s0,0,R), (s0,1,s1,1,R), (s0,B,s3,B,R) (s1,0,
s0,0,R), (s1,1,s2,0,L), (s1,B,s3,B,R) (s2,1,s3,0,R
)
(s1,1,s2,0,L)
(s2,1,s3,0,R)
B
B
0
1
0
1
0
0
B
B
456.4.2 Transition Function
(s0,0,s0,0,R), (s0,1,s1,1,R), (s0,B,s3,B,R) (s1,0,
s0,0,R), (s1,1,s2,0,L), (s1,B,s3,B,R) (s2,1,s3,0,R
)
B
B
0
1
0
0
0
0
B
B
- There is no transition function for state s3,
thus the machine halts.
466.4.2 Exercise
- Let T be the Turing machine defined by the
five-tuples (s0,0,s1,1,R), (s0,1,s1,0,R),
(s1,0,s2,1,L), (s1,1,s1,0,R), (s1,B,s2,0,L). For
each of these initial tapes, determine the final
tape when T halts, assuming that T begins in
initial position.
B
B
0
0
1
1
B
B
a)
B
B
1
0
1
B
B
B
b)
B
B
1
1
B
0
1
B
c)
B
B
B
B
B
B
B
B
d)
476.4.2 Exercise
- Let T be the Turing machine defined by the
five-tuples (s0,0,s1,0,R), (s0,1,s1,0,L),
(s0,B,s1,1,R), (s1,0,s2,1,R), (s1,1,s1,1,R),
(s1,B,s2,0,R), (s2,B,s3,0,R). For each of these
initial tapes, determine the final tape when T
halts, assuming that T begins in initial
position.
B
B
0
1
0
1
B
B
a)
B
B
1
1
1
B
B
B
b)
B
B
0
0
B
0
0
B
c)
B
B
B
B
B
B
B
B
d)
486.4.2 Exercise
- What does the Turing machine described by the
five-tuples (s0,0,s0,0,R), (s0,1,s1,0,R),
(s0,B,s2,B,R), (s1,0,s1,0,R), (s1,1,s0,1,R), and
(s1,B,s2,B,R) do when given a bit string as
input? - What does the Turing machine described by the
five-tuples (s0,0,s1,B,R), (s0,1,s1,1,R),
(s1,0,s1,0,R), (s1,1,s2,1,R), (s2,0,s1,0,R),
(s2,1,s3,0,L), (s3,0,s4,0,R), and (s3,1,s4,0,R)
do when given a bit string as input?
496.4.2 Solution
- Click Next for 3 and 4 solutions
506.4.2 Solution
- What does the Turing machine described by the
five-tuples (s0,0,s0,0,R), (s0,1,s1,0,R),
(s0,B,s2,B,R), (s1,0,s1,0,R), (s1,1,s0,1,R), and
(s1,B,s2,B,R) do when given a bit string as
input? - ????????? 1 ??????????
516.4.2 Solution
- What does the Turing machine described by the
five-tuples (s0,0,s1,B,R), (s0,1,s1,1,R),
(s1,0,s1,0,R), (s1,1,s2,1,R), (s2,0,s1,0,R),
(s2,1,s3,0,L), (s3,0,s4,0,R), and (s3,1,s4,0,R)
do when given a bit string as input? - ?????? 0 ?????? string ????????????? Blank
- ?????? 11 ??????? string ????????????? 00
??????????????
52Quiz
536.4.3 Transition Diagram
546.4.3 Transition Diagram
556.4.3 Transition Diagram
- (s0,0,s0,0,R), (s0,1,s1,0,R), (s0,B,s2,B,R),
(s1,0,s1,0,R), (s1,1,s0,1,R), (s1,B,s2,B,R)
566.4.3 Transition Diagram
Turing Machines are deterministic
S2
a?b,R
S1
S3
b?d,L
57Partial Transition Function
6.4.3 Transition Diagram
......
......
B
B
B
B
B
Example
S1
S2
S1
S3
586.4.3 Transition Diagram
The machine halts if there are no possible
transitions to follow
......
......
B
B
B
B
B
Example
S1
S2
S1
S3
596.4.3 Transition Diagram
S0
S1
- Final states have no outgoing transitions
- In a final state the machine halts
606.4.3 Transition Diagram
Accept Input
Reject Input
616.4.3 Transition Diagram
Example A Turing machine that accepts language a
a ? a,R
S0
626.4.3 Transition Diagram
a ? a,R
B ? B,L
S0
S1
B
B
B
B
S0
Halt Accept
636.4.3 Transition Diagram
a ? a,R
B ? B,L
S0
S1
B
B
B
B
b
S0
No possible transition HaltReject
646.4.3 Transition Diagram
Example Infinite loop on a TM
B ? B,L
S0
S1
656.4.3 Transition Diagram
B ? B,L
S0
S1
666.4.3 Transition Diagram
- For infinite loop case
- The final state cannot be reached
- The machine never halts
- The input is not accepted
676.4.3 Transition Diagram
Example Turing machine for the language anbn
s4
B?B,L
s0
s1
s2
s3
686.4.3 Transition Diagram
Test input tape
B
B
s0
696.4.4 TM Construction
- Find a TM that recognizes the set of bit strings
that have a 1 as their second bit, that is, the
regular set (0?1)1(0 ? 1) - TM ??????????????????????????? 0 ???? 1
????????????????????? 1 ?????????????????? 0 ????
1 ??????????? ?????? 0 ???????? - ???????? TM ??????????????????????????????????????
????? Blank - ???????? State S0
- ????????????????????????????? 0 ???? 1 ?????
????? - (s0,0,s1,0,R) ??? (s0,1,s1,1,R)
706.4.4 TM Construction
- Ex. TM ?????? (0?1)1(0 ? 1)
- ???????????????????????????????? 2 ??????? 1
?????????????? ????? - (s1,0,s2,0,R) ??? (s1,1,s3,1,R)
- ????????? ?????????????? s2 ????????????? Final
State ?????????? s3 ??????????? Final State - ??????????????????????????????? B ?????????? ?
state - s0 ?????? B ?????????????????? (0?1) ???????????
(s0,B,s2,B,R) - s1 ?????? B ??????????????????????????????
???????? (s1,B,s2,B,R) - ?????????????????? Transition Function ?????? s2
??? s3 ??? ???????????????? State
?????????????????????????????
716.4.4 TM Construction
- Ex. TM ?????? (0?1)1(0 ? 1)
- (s0,0,s1,0,R), (s0,1,s1,1,R), (s0,B,s2,B,R),
(s1,0,s2,0,R), (s1,1,s3,1,R), ??? (s1,B,s2,B,R)
726.4.4 TM Construction
- Ex. ???????? TM ????????? 0?10100?1
- String ?? ? ????? 010 ????????? String ????
736.4.4 TM Construction
- Ex. ???????? TM ????????? 0n1n n gt 1 ???????
1
0
0
0
1
1
1
B
B
746.4.4 TM Construction
- Ex. ???????? TM ????????? 0n1n n gt 1 ???????
2
0
0
0
1
1
1
B
B
756.4.4 TM Construction
- Ex. ???????? TM ????????? 0n1n n gt 1
(s0,0,s1,M,R), (s1,0,s1,0,R), (s1,1,s1,1,R),
(s1,M,s2,M,L), (s1,B,s2,B,L), (s2,1,s3,M,L),
(s3,1,s3,1,L), (s3,0,s4,0,L), (s3,M,s5,M,R),
(s4,0,s4,0,L), (s4,M,s0,M,R)
766.4.4 Exercise ... from Rosen
- Construct a TM with type symbols 0, 1, and B that
replaces the first 0 with a 1 and does not change
any of the other symbols on the tape. - Construct a TM with tape symbols 0, 1, and B
that, given a bit string as input, replaces all
0s on the tape with 1s and does not change any of
the 1s on the tape.
776.4.4 Exercise
- Construct a TM with tape symbols 0, 1, and B
that, given a bit string as input, replaces all
but the leftmost 1 on the tape with 0s and does
not change any of the other symbols on the tape. - Construct a TM with tape symbols 0, 1, and B
that, given a bit string as input, replaces the
first two consecutive 1s on the tape with 0s and
does not change any of the other symbols on the
tape.
786.4.4 Exercise
- Construct a TM that recognizes the set of all bit
strings that contain at least two 1s. - Construct a TM that recognizes the set of all bit
strings that contain an even number of 1s. - Construct a TM that recognizes the set
0n1n2n n gt 0.
79 80TM Simulator
http//ironphoenix.org/tril/tm/
81http//www.cs.washington.edu/building/art/SPTM/
82(No Transcript)
837.x Regular Languages
- Definition 1 Regular Languages and Regular
Expressions over ? - The set of R of regular languages over ?, and the
corresponding regular expressions, are defined as
follows. - ? is an element of R, and the corresponding
regular expression is ?. - ? is an element of R and the corresponding
regular expression is ?. - For each a ? ?, a is an element of R, and the
corresponding regular expression is a.
847.x Regular Languages
- Definition 1 Regular Languages and Regular
Expressions over ? - If L1 and L2 are any elements of R, and r1, r2
are the corresponding regular expressions, - (a) L1 ? L2 is an element of R, and the
corresponding regular expression is (r1 r2) - (b) L1L2 is an element of R, and the
corresponding regular expression is (r1r2) - (c) L1 is an element of R, and the
corresponding regular expression is (r1). - Only those languages that can be obtained by
using statements 1-4 are regular languages over
?. - - Kleene
857.x Regular Languages
- Languages Corresponding Regular Expression
- ? ? - null string
- 0 0
- 001 (i.e.,001) 001
- 0,1 (i.e.,0?1) 01
- 0,10 (i.e.,0?10) 010
- 1, ?001 (1 ?)001
- 1100,1 (110)(01)
- 110 110
- 10,111,11010 (101111010)
- 0,10(11 ?001, ?) (010)((11)001?)
867.x Regular Languages
- (ab) ? ab
-
- 1(1 ?) 1
- 11 1
- 01 10
- (01) (01)
877.4 Turing Machines
- ?????????????????????? Human Computer
- A human who is solving some problem
algorithmically using a pencil and paper. - ?????????????????? 3 ???
- the only things written on the paper are symbols
from some fixed finite set - each step taken by the computer depends only on
the symbol he is currently examining and on his
state of mind at the time - although his state of mind might changes as a
result of symbols he has seen or computations he
has made, only a finite number of distinct states
of mind are possible.
887.4 Turing Machines
- ?????????????????? Human Computer ?? 3 ???????
- Examining an individual symbol on the paper
- Erasing a symbol or replacing it by another
- Transferring attention from one part of the paper
to another.
897.4 Turing Machines
907.4 Turing Machines
- ??????????????????????????....??????????
- A Turing machine will have a finite alphabet of
symbols - (actually two alphabets, an input alphabet and a
possible larger alphabet for use during the
computation) - and a finite set of states, corresponding to the
possible state of mind of the human computer.
917.4 Turing Machines
- Instead of a sheet of paper, Turing specified a
linear tape, which has a left end and is
potentially infinite to the right. - The tape is marked off into squares, each of
which can hold one symbol from the alphabet - if a square has no symbol on it, we say that it
contains the blank symbol.
927.4 Turing Machines
- We think of the reading and writing as being done
by a tape head, which at any time is centered on
one square of the tape.
937.4 Turing Machines
947.4 Turing Machines
- In this study, a single move is determined by the
current state and the current tape symbol, and
consists of three parts - Replacing the symbol in the current square by
another, possibly different symbol - Moving the tape head one square to the right or
left (except that if it is already centered on
the leftmost square, it cannot be moved to the
left), or leaving it where it is - Moving from the current state to another,
possibly different state.
957.4 Turing Machines
- ??? Turing Machine ???????????????????????????????
- The tape serves as the input device
- (the input is simply the string, assume to be
finite, of nonblank symbols on the tape
originally), - the memory available for use during the
computation, - and the output device
- (the output is the string of symbols left on the
tape at the end of the computation).
967.4 Turing Machines
- ????????????? Turing machine ??? Machine ???? ?
- In Turing machine, processing a string is no
longer restricted to a single left-to-right pass
through the input. - The tape head can move in both directions and
erase or modify any symbol it encounters. - The machine can
- examine part of the input,
- modify it,
- take time out to execute some computations in a
different area of the tape, - return to re-examine the input, repeat any of
these actions, - and perhaps stop the processing before it has
looked at all the input.
977.4 Turing Machines