Title: Trigonometric Equations
1Trigonometric Equations
- In quadratic form, using identities or linear in
sine and cosine
2Solving a Trig Equation in Quadratic Form
- Solve the equation
- 2sin2 ? 3 sin ? 1 0, 0 ? 2p
- Let sin ? equal some variable
- sin ? a
- Factor this equation
- (2a 1) (a 1) 0
- Therefore a ½ a 1
3Solving a Trig Equation in Quadratic Form
- Now substitute sin ? back in for a
- sin ? ½ sin ? 1
- Now do the inverse sin to find what ? equals
- ? sin-1 (½) ? sin-1 1
- ? p/6 and 5p/6 ? p/2
4Solving a Trig Equation in Quadratic Form
- Solve the equation
- (tan ? 1)(sec ? 1) 0
- tan ? 1 0 sec ? 1 0
- tan ? 1 sec ? 1
- ? tan-1 1 ? sec-1 1
- ? p/4 and 5p/4 ? 0
5Solving a Trig Equation Using Identities
- In order to solve trig equations, we want to have
a single trig word in the equation. We can use
trig identities to accomplish this goal. - Solve the equation
- 3 cos ? 3 2 sin2 ?
- Use the pythagorean identities to change sin2 ?
to cos ?
6Solving a Trig Equation Using Identities
- sin2 1 cos2 ?
- Substituting into the equation
- 3 cos ? 3 2(1 cos2 ?)
- To solve a quadratic equation it must be equal to
0 - 2cos2 ? 3 cos ? 1 0
- Let cos ? b
7Solving a Trig Equation using Identities
- 2b2 3b 1 0
- (2b 1) (b 1) 0
- (2b 1) 0 b 1 0
- b -½ b -1
- cos ? -½ cos ? -1
- ? 2p/3, 4p/3 ? p
8Solving a Trig Equation Using Identities
- cos2 ? sin2 ? sin ? 0
- 1 sin2 ? sin2 ? sin ? 0
- -2sin2 ? sin ? 1 0
- 2 sin2 ? sin ? 1 0
- Let c sin ?
- 2c2 c 1 0
- (2c 1) (c 1) 0
9Solving a Trig Equation Using Identities
- (2c 1) 0 c 1 0
- c -½ c 1
- sin ? -½ sin ? 1
- ? p/3 p q2p-p/3 ? p/2
- ? 4p/3, q 7p/3
10Solving a Trig Equation Using Identities
- Solve the equation
- sin (2?) sin ? cos ?
- Substitute in the formula for sin 2?
- (2sin ? cos ?)sin ?cos ?
- 2sin2 ? cos ? cos ? 0
- cos ?(2sin2 1) 0
- cos ? 0 2sin2 ?1
11Solving a Trig Equation Using Identities
- cos ? 0
-
- ? 0, p ? p/4, 3p/4, 5p/4, 7p/4
12Solving a Trig Equation Using Identities
- sin ? cos ? -½
- This looks very much like the sin double angle
formula. The only thing missing is the two in
front of it. - So . . . multiply both sides by 2
- 2 sin ? cos ? -1
- sin 2? -1
- 2 ? sin-1 -1
13Solving a Trig Equation Using Identities
- 2? 3p/2
- ? 3p/4 2? 3p/2 2p
- 2q 7p/2
- q 7p/4
14Solving a Trig Equation Linear in sin ? and cos ?
- sin ? cos ? 1
- There is nothing I can substitute in for in this
problem. The best way to solve this equation is
to force a pythagorean identity by squaring both
sides. - (sin ? cos ?)2 12
15Solving a Trig Equation Linear in sin ? and cos ?
- sin2 ? 2sin ? cos ? cos2 ? 1
- 2sin ? cos ? 1 1
- 2sin ? cos ? 0
- sin 2? 0
- 2? 0 2? p
- ? 0 ? p/2
- ? p ? 3p/2
16Solving a Trig Equation Linear in sin ? and cos ?
- Since we squared both sides, these answers may
not all be correct (when you square a negative
number it becomes positive). - In the original equation, there were no terms
that were squared
17Solving a Trig Equation Linear in sin ? and cos ?
- Check
- Does sin 0 cos 0 1?
- Does sin p/2 cos p/2 1?
- Does sin p cos p 1?
- Does sin 3p/2 cos 3p/2 1?
18Solving a Trig Equation Linear in sin ? and cos ?
- sec ? tan ? cot ?
- sec2 ? (tan ? cot ?)2
- sec2 ? tan2 ? 2 tan ? cot ? cot2 ?
- sec2 ? tan2 ? 2 cot2 ?
- sec2 ? tan2 ? 2 cot2 ?
- 1 2 cot2 ?
- -1 cot2 ?
19Solving a Trig Equation Linear in sin ? and cos ?
- q is undefined (cant take the square root of a
negative number).
20Solving Trig Equations Using a Graphing Utility
- Solve 5 sin x x 3. Express the solution(s)
rounded to two decimal places. - Put 5 sin x x on y1
- Put 3 on y2
- Graph using the window 0 ? 2p
- Find the intersection point(s)
21Word Problems