??? - PowerPoint PPT Presentation

About This Presentation
Title:

???

Description:

Title: Subject: Author: Hao Zhifeng Keywords: Last modified by: ICBC Created Date: 6/23/2005 12:34:43 AM Category – PowerPoint PPT presentation

Number of Views:36
Avg rating:3.0/5.0
Slides: 35
Provided by: Hao86
Category:

less

Transcript and Presenter's Notes

Title: ???


1
?????????
???????????????? ???????
  • ???
  • (????)

??,??,2013.11
2
?? ??? ???????????
  • ????
  • ??????????n??? ,
  • ?????

???? ?????
???????????????????,??????????
3
  • ???,?????????????????????????????,????????????
    ???????Cramer??????????????????,??????????????????
    ???,??????????????????????????0,??????????????????
    ?????(??10)?

4
?? ??? ????????????????????????,?
????????????????????
  • ??????????????????????????n??? ,
    ?????

5
  • ???????????Binet1 ? Cauchy
    3???????,??????????????????1978?, H. Minc
    11????????????????????1980???,??????????????????
    ????? (??,??5, 7, 8, 9, 13, 16,18).?????????????
    ,????????

6
  • ???????,???????????????,???????????????????,????
    ???????????????????
  • ??????????????????(???????),???????????????
    ????????????????,???????Cramer??.?????????????????
    ???10(????????????),????????9,13,???????18??
    ???????8???????

7
  • ?????????
  • ??16. ?????? ?????????
    ????????(?????0), ???????(?????1)??
    ,??
  • ,
  • ?? .
  • ? ?????? ?????,??
  • ,??

8
  • ??????????6,?? ,?
    ??? .???????????14,17?

????
?????
??6,??
,??
???,
????????????????
??????????????,?????????????,????????????,????
?????,????,???????????(???,????????)?
9
  • ??,??????? ,????
    ,????????
  • ??????? ????2(???,??????????,?
    ?????)???,max-plus ?? ?min-plus??
    ??????,??????????4,
    19,?????????,??????????????????????????
    ???????????,????????????????????

10
  • ? ?????, ?

??????
  • ?,???? ,?? , ??
    ????

? ???? ???
???????????
??, ??
?? ???????,? ?? ?? ?????
? ???????, ?? ???
???????
????
?
??
?
????,
??
?
11
  • ??? .

?
,
.??
?
,
???????,
??
???????????,
??
????????????
?? ?
????
?????
??
12
  • ?? ?

?
???????,
?

?????,
??????
??
????
-????????
??
??
13
  • ?1???? ????? -??,?? ??????
    ? ???? -????? ??????,????
    ? ???? -???

??2. ?
???????,
?
??
??
-??,
?
?? ? -???
??
??
???
??????????,
????
?????
14
  • ???

?????
,??
??
?2??
??????,????
?
????
-?????
?3
???????? ,????
R????
?
-?????
15
  • ??????
  • 1. ??1???? ,???
  • (1) ????B??A????(???)?? ?????? ???,??
  • (2) ??A??i?(??i?)???B??i?(??i?)???C??i?(??i?)??,?
    ??????(??)???,??

16
  • (3)
  • (4) ????B??A????(???)???,??
  • (5) ??A????(???)??,??

(6) ????B??A??i???
??
????
??A??j????,
??
?? ???A??i???A??j????????
17
  • 2.??2? ,??????
  • ?? ??A????i??j?????
    ????
  • 3. ??3???? ,?? ??

18
  • 4.??4? ???????, ? ???? -??,
    ,??????

????
???
?????????
??
? ???????, ? ???? -??,
?? ? -??????
19
  • 5.??5???? ,???
  • (1)
  • (2)
  • 6. ??6 ???? ,??
  • ,??
  • ??

?? ??????,???? ?
???? -?????
???6,???
20
  • ??1?? ??????,?????? ,??

7.??7???? ,??? (1) ??
???A??i???A??j? ???????
(2)?? ,??
21
  • ???7,???
  • ??2?? ??????,?????? ,??
  • (1)
  • (2)

22
? ?????
  • 1.?????????????????

? ?????, ? ?????,??? ,??
? ?? ???,??
? , ?????,
  • ???? ,?? ? ??
    ????,?? ?

23
  • ??8? ???????, ? ???? -????????
    ,?? ,??,????
  • (1) ?????? ? ?????????
    ,?? ? ??????

(2) ?????? ? ?????????
,?? ? ??????
?? ??,??
24
  • ???8,???
  • ??3?? ??????,?????? , ??????
    ? ???,???,? ????(??)?, ??????
    ??? ??,??

25
2.??????Cramer??
  • ??9? ???????, ? ???? -????????
    ,?? , , ? ??
    ??????? ??,?????? ????
  • ?? , , ?? ??
    ???? ?????????

26
  • ???9,???
  • ??4? ??????, , ? ?? ???????
    ??,?????? ????
  • ?? , , ?? ?? ????
    ?????????

27
  • ???????
  • 1.??????????????,???????
  • 2.?????????????(?????????????????????????????
    ???????????????????????)???????????(??)??,????????
    ?????,?????,????,???,????,max-plus
    ???min-plus????????????

28
  • 3.?????????,??????????????????
  • ??????
  • 1 J. P. M. Binet, Me moire sur un systµeme de
    formules analytiques, et leur application µa des
    considerations geometriques, J. Ec. Polyt.9
    (1812)280-302
  • 2 Z. Q. Cao, K. H. Kim, F.W.Roush, Incline
    Algebra andApplications, John Wiley, New York,
    1984

29
  • 3 A. L. Cauchy, Memoire sur les fonctions qui
    ne peuvent obtenir que deux valeurs egales et de
    signes contraires par suite des traspositions
    operees entre les variables qu'elles renferment,
    J. Ec. Polyt. 10(1812) 29-11220
  • 4 R. A. Cuninghame-Green, Minimax algebra,
    Lecture Notes in Economics and Mathematical
    Systems 166, Springer-Verlag, Berlin, 1979
  • 5 J. S. Duan, The transitive closure,
    convergence of powers and adjoint of generalized
    fuzzy matrices. Fuzzy Sets and Systems
    145(2004)301-311

30
  • 6 J. S. Golan, Semirings and Their
    Applications, Kluwer Academic Publishers,1999
  • 7 S. C. Han, H. X. Li, Invertible incline
    matrices and Cramer's rule over inclines, Linear
    Algebra and its Applications 389(2004)121-138
  • 8 Y. Huang, Y. J. Tan, A problem on incline
    matrices, J. of Fuzhou University 37(2009)12-18
    (in Chinese)
  • 9 J. B. Kim, A. Baartmans, N. S. Sahadin,
    Determinant theory for fuzzy matrices, Fuzzy Sets
    and Systems 29(1989)349-356.

31
  • 10 B. R. Mcdonald, Linear Algebra over
    Commutative Rings, Marcel Dekker, INC. New
    York,1984.
  • 11 H. Minc, Permanents, Addison-Wesley
    Publishing Company, Massachusetts, U. S. A. 1978.
  • 12 P. L. Poplin, R. E. Hartwig, Determinantal
    identities over commutative semirings, Linear
    Algebra and its Applications 387(2004)99-132
  • 13 M. Z. Ragab, E. G. Emam, The determinant and
    adjoint of a square fuzzy matrix, Fuzzy Sets and
    Systems 61(1994)297-307

32
  • 14 Y. J. Tan, On invertible matrices over
    antirings, Linear Algebra and its Applications
    423(2007)428-444
  • 15 Y. J. Tan, On invertible matrices over
    commutative semirings, Linear and Multilinear
    Algebra 61(2013)710-714
  • 16 Z. J. Tian, K. M. Yan, D. G. Li, H. Zhao,
    Determinant of matrices over completely
    distributive lattices, J. Gansu Univ. Technol. 28
    (4) (2002) 115-118 (in Chinese)

33
  • 17 E. M. Vechtomov, Two general structure
    theorems on submodules, Abelian Groups and
    Modules (in Russion), Tomsk State University,
    Tomsk, No15(2000)17-23
  • 18 K. L. Zhang, Determinant theory for
    D01-lattices, Fuzzy Sets and Systems
    62(1994)347-353
  • 19 U. Zimmermann, Linear and combinatorial
    optimization in ordered algebraic structures,
    Annals of Discrete Mathematics, Vol. 10, North
    Holland, 1981.2

34
Thankyou!
Write a Comment
User Comments (0)
About PowerShow.com