State Space Model - PowerPoint PPT Presentation

About This Presentation
Title:

State Space Model

Description:

For linear motion Define two state variables for each ... Microsoft Equation 3.0 MathType 6.0 Equation State Space Model Quarter car suspension ... – PowerPoint PPT presentation

Number of Views:165
Avg rating:3.0/5.0
Slides: 24
Provided by: Brie82
Category:

less

Transcript and Presenter's Notes

Title: State Space Model


1
State Space Model
  • For linear motion
  • Define two state variables for each mass
  • x1position, x2 velocity x1-dot x2
  • x2-dot is acc and solve for it from Newtons
  • For angular motion
  • Define two state variables for each rotating
    inertia
  • x1 angle, x2 angular velocity x1-dot x2
  • x2-dot is angular acc and solve for it from
    Eulers law

2
Quarter car suspension
3
u
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
Electromechanical systems
  • Motors
  • DC motors
  • Induction motors
  • Variable reluctance motors
  • Generators
  • Angular position sensors
  • Encoders
  • Tachometers

9
(No Transcript)
10
For field control with constant armature current
For armature control with constant field current
11
Armature controlled motor in feedback
12
Get TF from wd to w and Td to w.
13
DC Motor Driving an Inertial Load
14
  • w(t) angular rate of the load, output
  • vapp(t) applied voltage, the input
  • i(t) armature current
  • vemf(t) back emf voltage generated by the motor
    rotation
  • vemf(t) constant motor velocity
  • t(t) mechanical torque generated by the motor
  • t(t) constant armature current

15
(No Transcript)
16
State Space model
17
Matlab
R 2.0 Ohms L 0.5 Henrys Km .015
torque constant Kb .015 emf constant Kf
0.2 Nms J 0.02 kg.m2 A -R/L -Kb/L
Km/J -Kf/J B 1/L 0 C 0 1 D
0 sys_dc ss(A,B,C,D)
18
Matlab output
a x1 x2
x1 -4 -0.03 x2
0.75 -10 b u1
x1 2 x2 0 c
x1 x2 y1
0 1 d u1
y1 0
19
SS to TF or ZPK representation
gtgt sys_tf tf(sys_dc) Transfer function
1.5 ------------------------ s2 14 s
40.02 gtgt sys_zpk zpk(sys_dc) Zero/pole/gain
1.5 ------------------------- (s4.004)
(s9.996)
20
  • Note The state-space representation is best
    suited for numerical computations. For highest
    accuracy, convert to state space prior to
    combining models and avoid the transfer function
    and zero/pole/gain representations, except for
    model specification and inspection.

21
4 ways to enter system model
sys tf(num,den) Transfer function sys
zpk(z,p,k) Zero/pole/gain sys ss(a,b,c,d)
State-space sys frd(response,frequencies)
Frequency response data s tf('s') sys_tf
1.5/(s214s40.02) Transfer function
1.5 ------------------------ s2 14 s
40.02 sys_tf tf(1.5,1 14 40.02)
22
4 ways to enter system model
sys_zpk zpk(,-9.996 -4.004,
1.5) Zero/pole/gain
1.5 ------------------------- (s9.996) (s4.004)
23
gtgt n1 2 3d1 4 5 6 gtgt A,B,C,Dtf2ss(n,d)
A -4 -5 -6 1 0 0 0
1 0 B 1 0 0 C 1
2 3 D 0 gtgt tf(n,d) Transfer
function s2 2 s 3 ---------------------
s3 4 s2 5 s 6
  • In Matlab
  • gtgt A0 1-2 -3
  • gtgt B01
  • gtgt C1 3
  • gtgt D0
  • gtgt n,dss2tf(A,B,C,D)
  • n
  • 0 3.0000 1.0000
  • d
  • 1 3 2
Write a Comment
User Comments (0)
About PowerShow.com