Title: DC Motor Driving an Inertial Load
1DC Motor Driving an Inertial Load
2- w(t) angular rate of the load, output
- vapp(t) applied voltage, the input
- i(t) armature current
- vemf(t) back emf voltage generated by the motor
rotation - vemf(t) constant motor velocity
- t(t) mechanical torque generated by the motor
- t(t) constant armature current
3(No Transcript)
4State Space model
5Matlab
R 2.0 Ohms L 0.5 Henrys Km .015
torque constant Kb .015 emf constant Kf
0.2 Nms J 0.02 kg.m2 A -R/L -Kb/L
Km/J -Kf/J B 1/L 0 C 0 1 D
0 sys_dc ss(A,B,C,D)
6Matlab output
a x1 x2
x1 -4 -0.03 x2
0.75 -10 b u1
x1 2 x2 0 c
x1 x2 y1
0 1 d u1
y1 0
7SS to TF or ZPK representation
gtgt sys_tf tf(sys_dc) Transfer function
1.5 ------------------------ s2 14 s
40.02 gtgt sys_zpk zpk(sys_dc) Zero/pole/gain
1.5 ------------------------- (s4.004)
(s9.996)
8- Note The state-space representation is best
suited for numerical computations. For highest
accuracy, convert to state space prior to
combining models and avoid the transfer function
and zero/pole/gain representations, except for
model specification and inspection.
94 ways to enter system model
sys tf(num,den) Transfer function sys
zpk(z,p,k) Zero/pole/gain sys ss(a,b,c,d)
State-space sys frd(response,frequencies)
Frequency response data s tf('s') sys_tf
1.5/(s214s40.02) Transfer function
1.5 ------------------------ s2 14 s
40.02 sys_tf tf(1.5,1 14 40.02)
104 ways to enter system model
sys_zpk zpk(,-9.996 -4.004,
1.5) Zero/pole/gain
1.5 ------------------------- (s9.996) (s4.004)
11Liquid Level System
- Qi input flow rate
- Qo output flow rate
- H liquid level in tank
- A cross section of tank
- V volume of liquid in tank
- V AH
12- Conservation of matter
- Qo is dependent on the head H
- const. coeff.
13- ?
- This is nonlinear.
- To find eq. points, set derivative0
- ?
- To linearize let
- where
14- Substitute into eq on top
- use
0
15- Output flow
- The quantity R is the called the
resistance of the valve and A is also denoted as
C is called the capacitance of the tank. - Then
- Note
-
16Two tank system
17In eq pt all flowsame
1
3
2
4
18- Exercise
- 1)get component block diag form 3, 4
- 2)put all four pieces to form block diag.
- 3)get T.F. from qi to q2
19Note ip10, ?vp1vovA vBvp20 Let vC1 vC2
be s.v., vo output.
20KCL at A
vo is not s.v. nor input, use vovC2
21KCL at B
0
vo1 not s.v. nor input,
vo1vAvC1vn1vC1 vp1vC1vovC1
vC2vC1
22Output eq
23Modeling
- Types of systems electric
- mechanical
-
electromechanical - Types of models I/O o.d.e. models
- state space models
24- I/O o.d.e. model a d.e. involving input/output
only. - linear
- where u input
- y output
25- State space model
- linear
- or in some text
- where u input
- y output
- x state vector
- A,B,C,D, or F,G,H,J are const matrices
26- Other types of models
- Transfer function model (This is I/O model) from
I/O o.d.e. model, take Laplace transform
27- Then I/O model in L.T. domain becomes
- This is the T.F. model of the system.
- ?T.F.
- or
- i.e. output L.T. is eq. to input L.T. with gain
H(s)
denote
28- State space model to T.F. / block diagram
- s.s.
- Take L.T.
- From sX(s)-AX(s)BU(s)
- sIX(s)-AX(s)BU(s)
- (sI-A)X(s)BU(s)
- X(s)(sI-A)-1BU(s)
1
2
1
29- into Y(s)C(sI-A)-1BU(s)DU(s)
- Y(s)C(sI-A)-1BD U(s)
- H(s) DC(sI-A)-1B
- is the T.F. from u to y
- from
2
1
30Example
31(No Transcript)
32- In Matlab
- gtgt A0 1-2 -3
- gtgt B01
- gtgt C1 3
- gtgt D0
- gtgt n,dss2tf(A,B,C,D)
- n
- 0 3.0000 1.0000
- d
- 1 3 2
33- gtgt n1 2 3d1 4 5 6
- gtgt A,B,C,Dtf2ss(n,d)
- A
- -4 -5 -6
- 1 0 0
- 0 1 0
- B
- 1
- 0
- 0
- C
- 1 2 3
- D
- 0