Title: Some recent findings about very stable boundary layers
1Some recent findings about very stable boundary
layers
- Branko Grisogono, AMGI, Zagreb
- I.Kavcic, I.Stiperski,
- Mark Ž, Danijel B, Leif E, Larry M, Dale D,
Thorsten M, Amela J, Sergej Z,
2- PRANDTL MODEL f , K(z)
- ASYMPTOTIC SOLUTION - WKB METHOD
- MIUU MODEL CHARACTERISTIC LENGTHSCALE
- PRANDTL-NUMERICAL MIUU SIMULATION
3CLASSIC PRANDTL MODEL
- Analytic model for a simple katabatic flow
basic, dirty nice - Balance between neg. buoyancy turbulent
diffusion
z
x
a
4NEW PRANDTL f , K(z)
B. C.
Valid even for finite-amplitude
perturbations, Stiperski et al. QJRMS 2007
Kavcic Grisogono, BLM 2007
5Solutions U q K K(z)as for steady flow
Pr Km/Kh const ? K(z)Kh, e.g.
Ko(z/h)exp(-0.5z2/h2)
Grisogono Oerlemans, JAS 2001 Parmhed et al.
QJRMS 2004 etc.
6Numerical (dashed), analytic WKB (full) U i qtot,
(a) t T (b) t 10T. (a, ?, Pr, C, f) -4,
4K/km, 1.1, -8C, 1.110-4s-1. T2p/sin(a) 1-5
hours.
7Solution V(z,t)... Boring skip it
8Numerical (dashed) analytic (VWKB full), (c)
t 20T i (d) t 50T. Other parameters as
before. Vf is solution a reasonable Kconst.
9MIUU (Leifs) MODEL
- 3D, nonlinear, hydrostatic, f const
- H-O-C turb. parameterization (level 2.5 many
fine details) - 5 progn. Eqns U, V, Q, q, TKE (e.g. Grisogono
Enger QJRMS 2004) - Here
- ?x 1.9 km const, slope -2.2o, C 6.5oC
- 211 7 201 points (yconst), total (nk)402
- ?t 13 s, zTOP 5.6 km (sponge from z 4.4
km) - 1 m lt ?z lt 29.5 m, staggered, terrain
influenced - Initialized by U i V 0, Q(z) ? 5K/km
10LSTAB 2Amin (TKE)1/2/N, (TKE)1/2/S ? Too
much mixing, too elevated INV. LLJ gt LSTAB
min2A(TKE)1/2/N, A(TKE)1/2/S
Grisogono Enger, QJRMS 2004
11New lowered LSTAB (z,t) in MIUU following
simulations
Analytics used for model tuning coeff. choice
for LSTAB, as from obs. data or LES gt get model
coeff
12New L
With old L
(a)
(b)
No explicit Shear in L same res. if same weight
in L to N S
t (h)
t (h)
(t, z) for qtot q gz MIUU model old L (a)
new L (b) (f, a, g, Pr, C) (1.0310-4 s-1,
-2.2, 510-3 Km-1, 1.1, -6.5C), T 3.39 h,
(for K hmax 200 m, Kmax 2 m2s-1).
13(a)
(b)
t (h)
t (h)
(t, z) for qtot q gz from simple numerical
(a) MIUU model (b) (f, a, g, Pr, C)
(1.0310-4 s-1, -2.2, 510-3 Km-1, 1.1, -6.5C),
T 3.39 h, (for K hmax 200 m, Kmax 2 m2s-1).
14(a)
(b)
t (h)
t (h)
U(t, z) from simple numerical (a) MIUU model
(b). The rest as before. Max(Unum) 5.4 ms-1
LLJ at 16 m. The input parameters as before.
15(a)
(b)
t (h)
t (h)
V(t, z) from simple numerical (a) MIUU model
(b).The rest as before. Min(Vnum) -2.6 ms-1.
The input parameters as before.
16(a)
(b)
t (h)
t (h)
V(t, z) from simple numerical (a) MIUU model
(b).The rest as before. Min(VWKB) -2.75 ms-1.
The input parameters as before.
17(b)
(a)
q tot WKB method simple numerial (a) MIUU
model (b), after t 20 h. The input parameters
as before.
18 Mauritsen et al. JAS2007, TTE TKE TPE. In
H-O-C Approach IMPORTANT TO MODEL
SABL MORE PROPERLY IN CLIMATE MODELS
-AFFECTS E.G. ICE GLACIERS MASS BALANCE VIA
MELTING, MICRO-CLIMATE
19CONCLUSION
- Agreement among analytic (WKB), numerical
- MIUU model solutions for (U, V, q)
- V(z,t) difusses up (U, ?) quasi-steady
- Limited data comparisons
- ZOOM OUT
- Very SABL, Ri -gt 8, gt tough to parameterize
model the flows (here a partial sol. given?) - typically NWP models are over-diffusive
20Spare slide
(b)
(a)
U(z) from WKB method simple numerical (a)
MIUU model (b), after t 20 h. The input
parameters as before.
21Spare slide
(b)
(a)
V(z) from WKB method simple numerical (a)
MIUU model (b), after t 20 h. The rest as
before.