SUMMARY - PowerPoint PPT Presentation

About This Presentation
Title:

SUMMARY

Description:

SUMMARY Statistical equilibrium and radiative transfer in molecular (H2) cloud Derivation of physical parameters of molecular clouds High-mass star formation ... – PowerPoint PPT presentation

Number of Views:89
Avg rating:3.0/5.0
Slides: 84
Provided by: Ricca69
Category:

less

Transcript and Presenter's Notes

Title: SUMMARY


1
SUMMARY
  1. Statistical equilibrium and radiative transfer in
    molecular (H2) cloud Derivation of physical
    parameters of molecular clouds
  2. High-mass star formation theoretical problems
    and observational results

2
Statistical equilibriumandradiative transfer
  • Statistical equilibrium equations coupling with
    radiation field
  • The excitation temperature emission, absorption,
    and masers
  • The 2-level system thermalization
  • The 3-level system population inversion ? maser

3
  • Problem
  • Calculate molecular line brightness I? as a
    function of cloud physical parameters
  • ? calculate populations ni of energy levels of
    given molecule X inside cloud of H2 with kinetic
    temperature TK and density nH2 plus external
    radiation field.
  • Note nX ltlt nH2 always e.g. CO most abundant
    species but nCO/ nH2 10-4 !!!

4
(No Transcript)
5
(No Transcript)
6
Radiative transfer equation the line case
7
2
A21
B21
B12
C12
C21
1
8
(No Transcript)
9
(No Transcript)
10
(No Transcript)
11
3-level system
3
A32
B23
C23
B32
C32
A31
B31
B13
C13
C31
2
A21
B21
B12
C12
C21
1
12
(No Transcript)
13
(No Transcript)
14
J2
A21 10 A10 A31 0
A21
J1
A10
J0
15
nH2 ncr Tex(1-0) gt TK
16
nH2 ncr Tex(1-0) lt 0 i.e. pop.
invers. MASER!!!
17
Radio observations
  • Useful definition brightness temperature, TB
  • In the radio regime Rayleigh-Jeans (h? ltlt kT)
    holds
  • In practice one measures mean TB over antenna
    beam pattern, TMB
  • Flux measured inside solid angle ?

18
  • Angular resolution HPBW 1.2 ?/D
  • Beam almost gaussian ?B p/(4ln2) HPBW2
  • One measures convolution of source with beam
  • Example
  • gaussian source ? gaussian image with
  • TMB TB ?S/(?B ?S)
  • S? (2k/?2) TB ?S (2k/?2) TMB (?B ?S)
  • TS (TS2 TB2)1/2

19
extended source ?Sgtgt ?B ? TMB TB
pointlike source ?Sltlt ?B ? TMB TB ?S/?B
ltlt TB
20
Estimate of physical parametersof molecular
clouds
  • Observables TMB (or F?), ?, ?S
  • Unknowns V, TK, NX, MH2, nH2
  • V velocity field
  • TK kinetic temperature
  • NX column density of molecule X
  • MH2 gas mass
  • nH2 gas volume density

21
Velocity field
  • From line profile
  • Doppler effect V c(?0- ?)/?0 along line of
    sight
  • in most cases line FWHMthermal lt FWHMobserved
  • thermal broadening often negligible
  • line profile due to turbulence velocity field
  • Any molecule can be used!

22
Star Forming Region
channel maps
integral under line
23
rotating disk
line of sight to the observer
24
GG Tau disk
13CO(2-1) channel maps
1.4 mm continuum
Guilloteau et al. (1999)
25
GG Tau disk
13CO(2-1) 1.3mm cont.
near IR cont.
26
infalling envelope
line of sight to the observer
27
VLA channel maps
100-m spectra
red-shifted absorption
bulk emission
blue-shifted emission
Hofner et al. (1999)
28
  • Problems
  • only V along line of sight
  • position of molecule with V is unknown along line
    of sight
  • line broadening also due to micro-turbulence
  • numerical modelling needed for interpretation

29
Kinetic temperature TKand column density NX
  • LTE nH2 gtgt ncr ? TK Tex
  • t gtgt 1 TK (?B/?S) TMB but no NX! e.g. 12CO
  • t ltlt 1 Nu ? (?B/?S) TMB e.g. 13CO, C18O, C17O
  • TK (h?/k)/ln(Nlgu/Nugl)
  • NX (Nu/gu) P.F.(TK) exp(Eu/kTK)

30
(No Transcript)
31
  • t 1 t -ln1-TMB(sat)/TMB(main) e.g. NH3
  • TK (h?/k)/ln(g2 t1/g1 t2) ? Nu? tTK ?
  • NX (Nu/gu) P.F.(TK) exp(Eu/kTK)

32
  • If Ni is known for gt2 lines ? TK and NX from
    rotation diagrams (Boltzmann plots) e.g. CH3C2H

P.F.S gi exp(-Ei/kTK) partition function
33
CH3C2H
Fontani et al. (2002)
34
CH3C2H
Fontani et al. (2002)
35
  • Non-LTE numerical codes (LVG) to model TMB by
    varying TK, NX, nH2 e.g. CH3CN

Olmi et al. (1993)
36
  • Problems
  • calibration error at least 10-20 on TMB
  • TMB is mean value over ?B and line of sight
  • t gtgt 1 ? only outer regions seen
  • different t ? different parts of cloud seen
  • chemical inhomogeneities ? different molecules
    from different regions
  • for LVG collisional rates with H2 needed

37
  • Possible solutions
  • high angular resolution ? small ?B
  • high spectral resolution ? parameters of gas
    moving at different Vs along line profile
  • ? line interferometry needed!

38
Mass MH2 and density nH2
  • Column density MH2? (d2/X) ? NX d?
  • uncertainty on X by factor 10-100
  • error scales like distance2
  • Virial theorem MH2? d TS (?V)2
  • cloud equilibrium doubtful
  • cloud geometry unknown
  • error scales like distance

39
  • (Sub)mm continuum MH2? d2 F? /TK
  • TK changes across cloud
  • error scales like distance2
  • dust emissivity uncertain depending on
    environment
  • Non-LTE nH2 from numerical (LVG) fit to TMB of
    lines of molecule far from LTE, e.g. C34S
  • results model dependent
  • dependent on other parameters (TK, X, IR field,
    etc.)
  • calibration uncertainty gt 10-20 on TMB
  • works only for nH2 ncr

40
t gt 1 ? thermalization
observed TB
observed TB ratio
TK 20-60 K nH2 3 106 cm-3 satisfy
observed values
41
best fits to TB of four C34S lines
(Olmi Cesaroni 1999)
42
H2 densities from best fits
43
Bibliography
  • Walmsley 1988, in Galactic and Extragalactic Star
    Formation, proc. of NATO Advanced Study
    Institute, Vol. 232, p.181
  • Wilson Walmsley 1989, AAR 1, 141
  • Genzel 1991, in The Physics of Star Formation and
    Early Stellar Evolution, p. 155
  • Churchwell et al. 1992, AA 253, 541
  • Stahler Palla 2004, The Formation of Stars

44
The formation of high-mass stars observations
and problems (high-mass star ? Mgt8M? ? Lgt103L?
? B3-O)
  1. Importance of high-mass stars their impact
  2. High- and low-mass stars differences
  3. High-mass stars observational problems
  4. The formation of high-mass stars where
  5. The formation of high-mass stars how

45
Importance of high-mass stars
  • Bipolar outflows, stellar winds, HII regions ?
    destroy molecular clouds but may also trigger
    star formation
  • Supernovae ? enrich ISM with metals ? affect star
    formation
  • Sources of energy, momentum, ionization, cosmic
    rays, neutron stars, black holes, GRBs
  • OB stars luminous and short lived ? excellent
    tracers of spiral arms

46
  • Stellar initial mass function (Salpeter IMF)
    dN/dM ? M-2.35 ? N(10MO) 10-2
    N(1MO)
  • Stellar lifetime
    t ?
    Mc2/L ? M-3 ? t(10MO) 10-3 t(1MO)
  • 105 1 MO stars per 10 MO star!
  • ? Total mass dominated by low-mass stars.
    However
  • Stellar luminosity
    L ? M4 ?
    L(10MO) 104 L(1MO)
    Luminosity of stars with mass between M1 and M2
  • L(10-100MO) 0.3 L(1-10MO)
  • ? Luminosity of OB stars is comparable to
    luminosity of solar-type stars!

47
The formation of high-mass and low-mass stars
differences and theoretical problems
48
stars lt 8MO isothermal unstable clump
accretion onto protostar disk outflow
formation disk without accretion protoplanetary
disk
sub-mm far-IR near-IR visibleNIR visible
49
stars gt 8MO isothermal unstable clump
accretion onto protostar disk outflow
formation disk without accretion protoplanetary
disk
sub-mm far-IR near-IR visibleNIR visible
?
50
Low-mass VS High-mass
  • Two mechanisms at work
  • Accretion onto protostar
  • Static envelope n?R-2
  • Free-falling core n?R-3/2
  • tacc M/(dMacc/dt)
  • Contraction of protostar
  • tKHGM2/RL
  • Stars lt 8 Msun tKH gt tacc
  • Stars gt 8 Msun tKH lt tacc
  • ? High-mass stars form still in accretion phase

51
(No Transcript)
52
Low-mass VS High-mass
  • Two mechanisms at work
  • Accretion onto protostar
  • Static envelope n?R-2
  • Free-falling core n?R-3/2
  • tacc M/(dMacc/dt)
  • Contraction of protostar
  • tKHGM2/RL
  • Stars lt 8 Msun tKH gt tacc
  • Stars gt 8 Msun tKH lt tacc
  • ? High-mass stars form still in accretion phase

n?R-2
n?R-3/2
53
Palla Stahler (1990)
tKHtacc
dM/dt10-5 MO/yr
Main Sequence
Sun
54
Problem Stellar radiation pressure ( wind
ionizing flux) halt accretion above M8 Msun ?
how to form Mgt8 M? ?
55
  • Solutions
  • Competitive accretion boosts dM/dt by deepening
    potential well through cluster
    dM/dt(Mgt8M?) gtgt dM/dt(M lt8M?)
  • Monolithic collapse accretion through diskjet
    focuses dM/dt enhancing ram pressure (disk) and
    allows photons to escape lowering radiation
    pressure (jet)
  • Merging of many stars with Mlt 8 M?
    insensitive to radiation pressure but needs
    gt106 stars/pc3 gtgt observed 104 stars/pc3 !!!

56
  • Discriminate between different models requires
    detailed observational study of environment
    structure (size, mass of cores) and kinematics
    (rotating disks, infall) on scales lt 0.1 pc
  • Monolithic collapse
  • disks (jets) necessary for accretion onto OB
    star
  • cluster natural outcome of s.f. process
  • Competitive accretion (merging)
  • disks natural outcome of infallang.mom.cons.
  • cluster necessary to focus accretion onto OB star

57
High-mass star forming regions Observational
problems
  • Deeply embedded in dusty clumps ? high extinction
  • IMF ? high-mass stars are rare N(1 MO) 100
    N(10 MO)
  • large distance gt400 pc, typically a few kpc
  • formation in clusters ? confusion
  • rapid evolution tacc 20 MO/10-3 MOyr-1 2 104
    yr
  • parental environment profoundly altered
  • Advantage
  • very luminous (cont. line) and rich (molecules)!

58
The formation of high-mass stars where they form
59
Visible extinction AVgt100!
60
NIR-MIR mostly stars
61
NIR-MIR and hot dust
62
MIR-FIR poor resolution
63
FIR but more sensitive to embedded stars! ?
luminosity estimate
64
Radio (sub)mm dusty clumps
65
Radio (sub)mm molecular lines
66
Radio lt 2cm thin free-free ? ? young HII regions
67
Radio gt 6cm free-free ? old HII regions
68
Typical star forming region
  • (IR-dark) Clouds 10-100 pc 10 K 102-103 cm-3
    Av1-10 CO, 13CO nCO/nH210-4
  • Clumps 1 pc 50 K 105 cm-3 AV100 CS,
    C34S nCS/nH210-8
  • Cores 0.1 pc 100 K 107 cm-3 AV1000
    CH3CN, exotic molecules nCH3CN/nH210-10
  • Outflows gt1pc ? Disks???
  • (proto)stars IR sources, maser lines, compact
    HII regions

69
The formation of high-mass stars how they form
70
Possible evolutionary sequence for high-mass stars
  • IR-dark (cold) cloud
  • fragmentation
  • (hot) molecular core
  • infallrotation
  • (proto)stardiskoutflow
  • accretion
  • hypercompact HII region
  • expansion
  • extended HII region

71
IR-dark clouds (gt1pc) pre-stellar phase
MSX 8 ?m
MSX 8 ?m
SCUBA 850 ?m
MSX 8 ?m
SCUBA 850 ?m
SCUBA 850 ?m
72
Clump
UC HII
HMC
Core
73
(No Transcript)
74
Hot molecular core site of high-mass star
formation
rotation!
HC HII or wind
HMC
embedded massive stars
CH3CN(12-11)
75
Formation of inverse P-Cyg profile
Observed inverse P Cyg profiles (Girart et al.
2009) ? infall!
H2CO(312-211)
CN(2-1)
76
Expanding hypercompact HII region Moscadelli et
al. (2007) Beltran et al. (2007)
7mm free-free H2O masers
500 AU
77
Expanding hypercompact HII region Moscadelli et
al. (2007) Beltran et al. (2007)
7mm free-free H2O masers
30 km/s
78
IRAS 201264104 Cesaroni et al. Hofner et
al. Moscadelli et al.
Keplerian rotation M7 MO
Moscadelli et al. (2005)
79
Conclusions
  • More or less accepted
  • IR-dark clouds precursors of high-mass stars
  • Hot molecular cores cradle of OB (proto)stars
  • Disk (jet) natural outcome of OB S.F. process
  • Still controversus
  • Monolithic collapse (like solar-type stars) or
    competitive accretion (in cluster)?
  • Role of magnetic field and turbulence

80
Bibliography
  • Beuther et al. 2007 in Protostars and Planets V,
    p. 165
  • Bonnell et al. 2007 in Protostars and Planets V,
    p. 149
  • Cesaroni et al. 2007 in Protostars and Planets V,
    p. 197
  • Stahler Palla 2004, The Formation of Stars

81
(No Transcript)
82
(No Transcript)
83
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com