Biology I - GENETICS - PowerPoint PPT Presentation

About This Presentation
Title:

Biology I - GENETICS

Description:

Biology I - GENETICS 1-12 Novak – PowerPoint PPT presentation

Number of Views:247
Avg rating:3.0/5.0
Slides: 101
Provided by: BobN165
Category:

less

Transcript and Presenter's Notes

Title: Biology I - GENETICS


1
Biology I - GENETICS
  • 1-12 Novak

2
Gregor Mendel 1822-1884
3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
MENDELS PRINCIPLES
7
I. ALLELES
  • Any organism has two units of heredity (genes)
    for each trait in every body cell

8
II. SEGREGATION
  • The two units (genes) for a trait are separated
    in the cell one gene is found on a chromosome
    while the other is located in the same place on
    its partner (homologous) chromosome

9
(No Transcript)
10
III. DOMINANCE
  • A. When two genes of a trait are different
    in the cells of the organism, the gene that
    shows up is the dominant while the gene that
    remains hidden is the recessive
  • B. Combinations of the two genes
    (genotypes)
  • 1. Homozygous (pure) dominant - both genes
    are dominant
  • 2. Homozygous (pure) recessive - both genes
    are recessive
  • 3. Heterozygous (hybrid) - one gene is dominant
    the other is recessive

11
IV. RECOMBINATION - (INDEPENDENT ASSORTMENT)
  • In each new generation there is a complete new
    rearrangement of the units of heredity (genes)

12
(No Transcript)
13
Following the Generations
Cross 2 Pure PlantsTT x tt
Results in all HybridsTt
Cross 2 Hybridsget3 Tall 1 ShortTT, Tt, tt
14
Generation Gap
  • Parental P1 Generation the parental generation
    in a breeding experiment.
  • F1 generation the first-generation offspring in
    a breeding experiment. (1st filial generation)
  • From breeding individuals from the P1 generation
  • F2 generation the second-generation offspring
    in a breeding experiment. (2nd filial
    generation)
  • From breeding individuals from the F1 generation

15
Mendels Experimental Results
16
Thomas Hunt Morgan 1866-1945
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
Incomplete Dominance (blending inheritance)
22
  • INCOMPLETE DOMINANCE
  • A condition in which both alleles for a
    characteristic are partially expressed

23
Incomplete Dominance
  • F1 hybrids have an appearance somewhat in between
    or a blend of the phenotypes of the two parental
    varieties.
  • Example snapdragons (flower)
  • red (RR) x white (WW)
  • R red flower
  • W white flower

24
Incomplete Dominance
W
W
25
Incomplete Dominance
26
  • CODOMINANCE
  • A condition in which both alleles for a
    characteristic are fully expressed

27
Codominant white and pink
28
Codominant white and pink
29
Homozygous Red
30
Hereford Red
31
Homozygous white
32
Roan hybrid
33
Roan hybrid
34
Codominant cross
35
DIHYBRID INHERITANCE
36
Pea Plants
Seed Color
Height
Tall TT, Tt Short tt
Yellow YY, Yy Green yy
Lets cross a homozygous tall (TT), homozygous
yellow seed (YY) plant with a short (tt), green
seed (yy) plant.
TTYY x ttyy
These are the genotypes of the two plants.
37
Independent Assortment
Mendels principle of Independent Assortment
states that genes for different traits can
segregate independently during the formation of
gametes (eggs sperm in animals, eggs and pollen
in plants).
TTYY
First T
with first Y
T
Y
Gamete 1 sperm, egg, pollen . . .
38
Independent Assortment
Mendels principle of Independent Assortment
states that genes for different traits can
segregate independently during the formation of
gametes (eggs sperm in animals, eggs and pollen
in plants).
TTYY
First T
with second Y
TY
T
Y
Gamete 2
Gamete 1
39
Independent Assortment
Mendels principle of Independent Assortment
states that genes for different traits can
segregate independently during the formation of
gametes (eggs sperm in animals, eggs and pollen
in plants).
TTYY
Second T
with first Y
TY
TY
T
Y
Gamete 2
Gamete 3
Gamete 1
40
Independent Assortment
Mendels principle of Independent Assortment
states that genes for different traits can
segregate independently during the formation of
gametes (eggs sperm in animals, eggs and pollen
in plants).
TTYY
Second T
with second Y
TY
TY
TY
Y
T
Gamete 2
Gamete 3
Gamete 4
Gamete 1
41
Dihybrid Punnett Square - F1
P1 TTYY
TY TY TY TY
ty
ty
ty
ty
Will be F1 Generation
P2 ttyy
42
Dihybrid Punnett Square - F1
TY TY TY TY
ty TTYy
ty TTYy
ty TTYy
ty TTYy
43
Dihybrid Punnett Square - F1
TY TY TY TY
ty TtYy TtYy TtYy TtYy
ty TTYY TtYY TtYY TTYY
ty TTYY TTYY TTYY TTYY
ty TTYY TTYY TTYY TTYY
44
Dihybrid Punnett Square - F1
TY TY TY TY
ty TtYy TtYy TtYy TtYy
ty TtYy TtYy TtYy TtYy
ty TtYy TtYy TtYy TtYy
ty TtYy TtYy TtYy TtYy
45
Dihybrid Punnett Square - F1
TY TY TY TY
ty TtYy TtYy TtYy TtYy
ty TtYy TtYy TtYy TtYy
ty TtYy TtYy TtYy TtYy
ty TtYy TtYy TtYy TtYy
Genotype ratio TtYy - 16/16
Phenotype ratio Tall, Yellow - 16/16
46
Dihybrid Punnett Square F2We need to pair up
the genes which can be given to each gamete (egg
and pollen).Lets cross two of the plants from
the F1 generation
We need to pair up the genes
TY TY TY TY
ty TtYy TtYy TtYy TtYy
ty TtYy TtYy TtYy TtYy
ty TtYy TtYy TtYy TtYy
ty TtYy TtYy TtYy TtYy
.
x
T
Y
T
y
t
Y
y
t
47
Dihybrid Punnett Square F2
TY Ty tY ty
TY
Ty
tY
ty
Both the plants can give the same gene
combinations to their gametes, so the pairs along
the top and down the side are the same.
48
Dihybrid Punnett Square F2
When you pair up the gametes from the two plants,
always put like letters together and within the
like letters, put the CAPITAL letter in front of
the lowercase letter.
49
Dihybrid Punnett Square F2
TY Ty tY ty
TY TTYY TTYy TtYY TtYy
Ty ???? ???? ???? ????
tY ???? ???? ???? ????
ty ???? ???? ???? ????
Your Turn!!
50
Dihybrid Punnett Square F2
TY Ty tY ty
TY TTYY TTYy TtYY TtYy
Ty TTYy TTyy TtYy Ttyy
tY TtYY TtYy ttYY ttYy
ty TtYy Ttyy ttYy ttyy
F2 generation
51
Dihybrid Punnett Square F2
Genotype and phenotype ratios?
TY Ty tY ty
TY TTYY TTYy TtYY TtYy
Ty TTYy TTyy TtYy Ttyy
tY TtYY TtYy ttYY ttYy
ty TtYy Ttyy ttYy ttyy
52
F2 Genotype Ratio
TTYY - 1 TTYy - 2 TtYY - 2 TtYy - 4 TTyy - 1 Ttyy
- 2 ttYY - 1 ttYy - 2 ttyy - 1
53
F2 Phenotype Ratio
TTYY - 1 TTYy - 2 TtYY - 2 TtYy - 4 TTyy - 1 Ttyy
- 2 ttYY - 1 ttYy - 2 ttyy - 1
Tall, Yellow - 9
Tall, Green - 3
Short, Yellow - 3
Short, Green - 1
54
Another Mendelian Dihybrid Problem
55
(No Transcript)
56
(No Transcript)
57
Dihybrid F2 Results
58
Dihybrid F2 Results
59
Sex-Linked Inheritance
60
(No Transcript)
61
Color Blindness
62
normal - trichromatic color vision protanopia
red-green blindness (no red cones) deutanopia
red-green blindness (no green cones) tritanopia
blue-yellow blindness (no blue cones) typical
achromatopsia (no cones rod monochromat)
protanomaly (anomalous red cones) deutanomaly
(anomalous green cones) tritanomaly (anomalous
blue cones) atypical achromatopsia (low cones
cone monochromat)
  • TYPES OF COLOR BLINDNESS

63
Red Green Color BlindnessMale1.01Female0.02
64
(No Transcript)
65
(No Transcript)
66
(No Transcript)
67
Sex-linked Traits
  • Traits (genes) located on the sex chromosomes
  • Sex chromosomes are X and Y
  • XX genotype for females
  • XY genotype for males
  • Many sex-linked traits carried on X chromosome

68
(No Transcript)
69
(No Transcript)
70
(No Transcript)
71
(No Transcript)
72
Hemophilia
73
Female Carriers
74
The effects of hemophilia
75
(No Transcript)
76
(No Transcript)
77
Human Blood Coagulation Cascade
78
(No Transcript)
79
(No Transcript)
80
  • The End

81
(No Transcript)
82
(No Transcript)
83
(No Transcript)
84
(No Transcript)
85
(No Transcript)
86
(No Transcript)
87
(No Transcript)
88
(No Transcript)
89
(No Transcript)
90
(No Transcript)
91
(No Transcript)
92
(No Transcript)
93
(No Transcript)
94
(No Transcript)
95
(No Transcript)
96
(No Transcript)
97
(No Transcript)
98
(No Transcript)
99
(No Transcript)
100
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com