Title: Ch 10.3 Polar Functions
1Ch 10.3 Polar Functions
- Calculus Graphical, Numerical, Algebraic by
- Finney, Demana, Waits, Kennedy
2(No Transcript)
3(No Transcript)
4(No Transcript)
5(No Transcript)
6v
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12 Converting Polar to Rectangular
Use the polar-rectangular conversion formulas to
show that the polar graph of r 4 sin ? is a
circle.
13 Converting Polar to Rectangular
Use the polar-rectangular conversion formulas to
show that the polar graph of r 4 sin ? is a
circle.
14 Slope of a Polar Curve
15 Finding slope of a polar curve
Find the slope of the rose curve r 2 sin 3? at
the point where ? p/6 and use it to find the
equation of the tangent line.
16 Finding slope of a polar curve
Find the slope of the rose curve r 2 sin 3? at
the point where ? p/6 and use it to find the
equation of the tangent line.
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25 Area enclosed by polar curves
The area enclosed by a polar curve is the
infinite sum of small triangular sectors between
the origin and the curve.
26 Area in Polar Coordinates
27(No Transcript)
28(No Transcript)
29(No Transcript)
30 Finding Area Between Curves
Find the area of the region that lies inside the
circle r 1 and outside the cardioid r 1
cos ?.
31 Finding Area Between Curves
Find the area of the region that lies inside the
circle r 1 and outside the cardioid r 1
cos ?.
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40(No Transcript)
41(No Transcript)