Title: Some RSA-based Encryption Schemes with Tight Security Reduction
1Some RSA-basedEncryption Schemes withTight
Security Reduction
- Kaoru Kurosawa, Ibaraki University
- Tsuyoshi Takagi, TU Darmstadt
2One-wayness and Semantic-security
- One-wayness E(m) ? m is hard.
- Semantic security IND-CPA (CCA)
- E(m) ? any information on m is hard against
CPA (CCA).
3Random Oracle Model
- Hash function H is treated as a random function
in the random oracle model. - However,
- RO model proof is heuristic.
- If we replace RO to a practical hash function,
- then the proof is no longer valid.
4IND-CCA in the Standard Model
- Cramer-Shoup schemes
- 1. (Crypto98) Decisional DH assumption.
- One-wayness DH assumption.
- RSA-based IND-CCA scheme is unknown!
5RSA-based IND-CPA schemes
- In the Standard Model,
- 1. RSA-Paillier scheme is IND-CPA
- One-wayness RSA
- (Catalano et al., Asiacrypt02)
- 2. Rabin-Paillier scheme is IND-CPA
- One-wayness Factoring Blum integers
- (Galindo et al., PKC03)
in this talk
6Our result
Let e be a success probability that breaks the
one-wayness of Rabin-Paillier scheme.
Proof Technique Factoring Probability
Galindo et al. (PKC03) e2 - LLL,
RSA-Paillier Proposed proof
e - totally elemental
7RSA-Paillier scheme
- (Public-key) N ( pq) and e.
- (Secret key) d ( e-1 mod (p-1)(q-1))
- (Plaintext) m ? ZN
- (Ciphertext) For random r ?R ZN,
- C re mN mod N2. ---- (1)
- (Decryption) r Cd mod N,
- m (C re mod N2)/N.
8Security of RSA-Paillier
- Proposition 1 (Semantic Security)
- IND-CPA if re mod N2 r ? ZN and
- re mod N2 r ? ZN2 are indistinguishable.
- Proposition 2 (One-wayness)
- One-wayness breaking RSA.
- (Catalano et al., Asiacrypt02)
Two oracle calls are required gt reduction
probability e2.
9Rabin-Paillier scheme
- (Public-key) N ( pq), Blum integer
- (Secret key) p,q, d ( e-1 mod (p-1)(q-1))
- (Plaintext) m ? ZN
- (Ciphertext) r ?R SQN s2 mod n s? ZN ,
- C r2e mN mod N2. ---- (2)
- (Decryption) A Cd mod N,
- find the unique solution r? SQN of r2 A mod
N, - m (C r2e mod N)/N.
10Security of Rabin-Paillier
- Proposition 1 (Semantic Security)
- IND-CPA if r2e mod N2 r ? SQN and
- r2e mod N2 r? SQN2 are indistinguishable.
- Proposition 2 (One-wayness)
- One-wayness breaking factoring.
- (Galindo et al., PKC 2003)
The same proof technique with RSA-Paillier gt
reduction prob. e2.
11Our Proof
- Let O be an Oracle that find m from C with
prob.e. - We will show a factoring algorithm A by using O.
- On input N,
- 1. Choose fake r ? Zn and m ? Zn s.t. (r/N)
-1 - 2. Query C r2e mN mod N2 to oracle O.
- 3. O answers proper m s.t. C r2e mN mod N2,
- with prob. e, where r ? SQN.
12Our Proof (Cont.)
- Note that C r2e r2e mod N.
- Thus, r2 r2 yN in Z for some -nltyltn.
- 4. A computes y.
- x r2
- w C - mN r2e (x yN)e mod N2.
- xe exe-1yN
mod N2. - Thus, y (exe-1)-1 ((w-xe mod N2)/N) mod N.
13Our Proof (Cont.)
- 6. A computes r
- by solving quadratic equation r2 x yN in
Z. - 7. Finally, A computes gcd(r - r,N) p or q,
- because r2 r2 mod N with r ? SQN
- and r ? Zn s.t. (r/N) -1.
-
A has asked oracle O only once gt reduction
probability e.
14Concluding Remarks
- 1. We proposed a tight reduction algorithm for
Rabin-Paillier cryptosystem. - 2. A similar result with the following variant
-
- C (r a/r)e mN mod N2,
- where (a/p) (a/q) -1.
- 3. An IND-CCA variant in RO-model is
- C (r2e mN mod N2 ) H(r,m).
- It is still IND-CPA OW in standard model.
15RSA-based IND-CCA schemes in RO Model
Let e be a success probability breaking IND-CCA
scheme.
Schemes - reduced problem Reduction
Probability RSA-OAEP (Crypto01) e
2 - RSA Problem SAEP (Crypto01)
e - Factoring