Real Time Models in 3KEYMASTER Simulation Environment - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

Real Time Models in 3KEYMASTER Simulation Environment

Description:

Real Time Models in 3KEYMASTER Simulation Environment Quick Overview Projects Bruce Power PPL Susquehanna Technology R3K Control Interpreter Relap xml-based Editor ... – PowerPoint PPT presentation

Number of Views:131
Avg rating:3.0/5.0
Slides: 37
Provided by: wsc90
Category:

less

Transcript and Presenter's Notes

Title: Real Time Models in 3KEYMASTER Simulation Environment


1
  • Real Time Models in 3KEYMASTER Simulation
    Environment

2
Quick Overview
  • Projects
  • Bruce Power
  • PPL Susquehanna
  • Technology
  • R3K
  • Control Interpreter
  • Relap xml-based Editor
  • Relap IDE
  • Demo

3
BruceB - Primary Heat Transport System
4
BruceB - Moderator System
Real Time 3 X 8 X 1
Verification 8 X 8 X 6
5
BruceB 16 channels core map
Iw Inner West Ie Inner East Ow
Outer west Oe Outer East
6
BruceB - Heat Structures
Pressure Tube
Fuel Pin
PHT Coolant
Cooling Gas
Moderator Fluid
7
BruceB - Boilers and Main Steam
8
BruceB Verification Model
9
BruceB - Model Highlights
  • NESTLE - Cartesian geometry of 30X30 with 13
    axial nodes
  • TH total number of volumes 764
  • Interstitials and Feedback
  • 4 control absorbers
  • 32 shut-off rods
  • 25 core adjusters
  • 14 liquid zone controllers
  • moderator heavy water purity
  • gadolinium concentration
  • WSC FlowBase code models
  • Calandria cover gas system
  • Main moderator system
  • Feed and Bleed system
  • Maintenance cooling system

10
BruceB - Scenarios
  • Normal operations shut-down, startup
  • from 100 power to hot shutdown condition
  • Condenser Steam Discharge system down to 160 C
  • Shutdown Cooling System to 90 C
  • Turn off main pumps and turn on Maintenance
    Cooling System to 60 C
  • Drainage of the PHT
  • Xenon decay in fast time
  • Disconnect/Connect Pressurizer
  • Turn on pumps, warm-up in fast time
  • Reach criticality
  • power increase for turbine roll up
  • generator synchronization
  • power increase to 100

11
BruceB - Scenarios
  • Transients
  • pumps trips
  • turbine trip
  • shut-down
  • BOP systems transients
  • Accidents
  • LOCA
  • LOMA
  • On-power refueling

12
BruceB pump trip

Verification Model Core coolant temperature 4
seconds after one pump trip
13
PPL Reactor Vessel

14
PPL Level Instrumentation

15
PPL - Refueling Model

16
PPL - Model Highlights
  • NESTLE 32X32X12 mesh for X, Y, Z
  • Cross-Sections are generated using NESLINK-MB
    code which processes MICROBURN and CASMO4 files
  • Cross-Sections are stored in new FTB file
  • Feed Water, Main Steam and CleanUp systems are
    simulated using WSC FlowBase code
  • GE experimental data are used for separators
    carry-under effect
  • 13 TH core channels hydraulics is tuned using MB
    printout

17
PPL - LBLOCA 1 minute

80 bar
Leak Flow
Upper Plenum Pressure
20 bar
Pump Discharge Flow
Shutdown Range
18
PPL LBLOCA 1 minute

RHR Flow
Separators void
Fuel Temperature
Core Void
19
PPL LBLOCA 2 minutes

RHR Flow
60 bar
Upper Plenum Pressure
6 bar
Pump Discharge Flow
Core Void
20
PPL LBLOCA 15 minutes

Leak Flow
Upper Plenum Pressure
Core Void
Wide Range
21
R3K
  • all interactions between 3KeyMaster and RELAP5
  • no need to change RELAP5 source code
  • possibility to run RELAP5 in stand alone mode
  • solid ground for further development stages

22
RELAP5 as a 3KeyMaster Task
  • Flexible RELAP5 Time Step Adjustment
  • Flexible RELAP5 Task CPU Assignment
  • RELAP5 Data Presentation in form of Trends,
    Tables and Dynamic Drawings
  • Possibility to run several Real-Time RELAP5 Tasks
    under same simulator load
  • Full control through Instructor Station
  • Real-time change of boundary conditions
  • Access to all RELAP5 ME variables

23
R3K Functional Specification
  • make time advancement
  • write restart file
  • read restart file
  • setup model time
  • setup mode
  • steady-state / transient
  • components to run (hydro, htadv, rkin)
  • print major edit
  • debug mode on/off
  • generate list of ME variables
  • output specified variables
  • input parameters of TDC and control variables
  • programming features
  • LAG input/output parameter
  • change heat capacity of specified material
  • change fouling factor of specified HS
  • change form loss coefficients of specified
    junction

24
R3K- shared memory
sh-in
RELAP5
R3K
sh-out
r3k.tdcomp
ltname of variablegt ltcomponent numbergt
ltLag timegt
r3k.medit
ltname of variablegt ltcomponent numbergt
ltLag timegt
25
R3K shared memory
26
R3K shared memory

27
R3K C access

if (rlp_th_refuel)
OPENPVLV(cntrlvar645, 0.1) double
addLevel (MAXVOID - voidg670010000)
MAXLEVEL if (addLevel gt MAXLEVEL)
addLevel MAXLEVEL
cntrlvar10 cntrlvar10 addLevel else
CLOSEPVLV(cntrlvar645, 0.1)
28
R3K snap/reset file
  • each restart in separate file
  • file name generation compatible with 3KeyMaster
  • fully compatible with stand alone RELAP5
  • possibility to replace RELAP5 components after
    restart
  • shared memory is stored in 3KeyMaster
  • possibility to change model time after restart
  • backtrack options
  • run in separate thread
  • run on another CPU
  • automatic compress

29
R3K time advancement
30
R3K Fixed Frequencies

31
R3K Floating Frequencies

32
R3K Control System Interpreter
  • Options to develop Control System
  • RELAP5 Input Deck
  • boring
  • complex when logics involved
  • changes require re-snap ICs
  • 3KeyMaster task C program
  • have to build task
  • Symbolic Calculations and Transfer - SCATER
  • implemented in YACC
  • invoked on every time step
  • no declarations, simple and handy

33
R3K SCATER Example
  • density
  • 80.0, 1011.838 \
  • 100.0, 1005.543 \
  • 150.0, 988.4994 \
  • 300.0, 922.7115 \
  • dp50 (p052020000 rho052010000 15.93) -
    (p050010000 rho050010000 4.006)
  • dp50lag lag(dp50, 1.5)
  • reftemp 0.09 tempg050010000 cntrlvar6761
    0.91
  • level50 densityreftemp 25.2 dp50
  • cntrlvar50 nconvlevel50
  • if (aa gt 1.5 2.4 lt dd)

34
RELAP5 Input Deck Editor
  • XML definition in external file
  • First Version - Validator
  • ltPIPEgt
  • ltCardNo0001 MaxNumber"0001" option"Required"
    wno"1" help"pg_0070"gt
  • ltW1 name"Vol num" type"int" range"GT 0
    AND LT 100" update"var" value"0" N"1"
    help"pg_0070"/gt
  • lt/CardNo0001gt
  • ltCardNo0003 MaxNumber"0003"
    option"Optional" wno"5" help"pg_0072"gt
  • ltW1 name"Magnetic f str" type"float"
    range"GE 0" update"var" value"0"
    help"pg_0072"/gt
  • ltW2 name"Duct wall cond" type"float"
    range"GE 0" update"var" value"0"
    help"pg_0072"/gt
  • ltW3 name"Duct wall thickness" type"float"
    range"GE 0" update"var" value"0"
    help"pg_0072"/gt
  • ltW4 name"Duct geometry type" type"int"
    range"EQ 1 AND EQ 2" update"var" value"1"
    wopt"opt help"pg_0072"/gt
  • ltW5 name"Fringle volume flag" type"int"
    range"GE -1 AND LE 2" update"var" value"0"
    wopt"opt" help"pg_0072"/gt
  • lt/CardNo0003gt
  • ltCardNo0101 MaxNumber"0199"
    option"Required" wno"2" help"pg_0073"gt
  • ltW1 name"Area X" type"float" range"GE 0"
    update"var" value"0.0" help"pg_0073"/gt
  • ltW2 name"Vol No" type"int" range"GT 0"
    update"var" value"1" help"pg_0073"/gt

35
RELAP5 Input Deck Editor
36
RELAP5 IDE
  • We may use UNIX machines but development stays on
    PC
  • Stay with RELAP5 Input Deck
  • Edit, run and see results from the same screen
  • Easy to customize and extend
  • Rich and fast graphics
  • Demo
Write a Comment
User Comments (0)
About PowerShow.com