Title: Motores
1Motores
2Motores (Modulo 160401a)
- Es un dispositivo mecánico en el cual la energía
química de la oxidación del combustible es
convertida en energía calorífica, la cual a su
vez es convertida en energía mecánica. - La relación es normalmente desde 71 hasta 151
por peso (aire/combustible).
3?QUE ES TORQUE?
- Es la fuerza aplicada en una palanca que hace
rotar alguna cosa, provocando un momento
torsional. - Expresado en lbpie, lbplgs, o Newton-metros.
- Tq F x distancia del radio en pie
Lectura del torque
Fuerza
Tornillo o tuerca conectada empieza a torcerse
4QUE ES POTENCIA?
- Es cuán rápido podemos realizar el trabajo.
- 1 HP 746 Watts
- 1 HP 550 lb. pie./sec.
- HP T x RPM
- 5252
Cuál es la unidad de potencia?
Si
5RANGO DE CABALLOS DE FUERZA DE UN MOTOR (p. 8)
- CABALLOS DE FUERZA INDICADO
- Son los caballos de fuerza calculados
teóricamente. - No se encuentran previstas las perdidas por
fricción o bombeo, o la energía necesaria para
mover otros accesorios.
6CABALLOS DE FUERZA POR FRICCION (CFFr)
- Es la energía perdida por fricción y bombeo.
- (Ej. Transmisión, rodamientos, poleas, bombas)
- FHP IHP BHP (CFFr CFI CFF)
7CABALLOS DE FUERZA DE FRENO
- Es la energía existente medida en el extremo del
cigüeñal (Volante). - Este es el desarrollo de los caballos de fuerza
existente en el motor en operación. - BHP IHP FHP. (CFF CFI-CFFr)
8PRESION
- Es una fuerza por unidad de área.
- Ej. lbs.Plgs2 o kPa (1 lbPlgs2 6.9 kPa)
9VACIO (p. 9)
- Es la presión por debajo de la presión
atmosférica. (14.7 lbsPlgs2 o 0 psig _at_ sea
level).
10PRESION ATMOSFERICA
- Es debido al peso de la atmósfera sobre la
superficie de la tierra que a nivel del mar
existe 14.7 lbsPlgs2 atmosférica.
Presión ejercida sobre unidad unidades de área.
16 400 pies sobre el nivel del mar. Pr 7.7
LbsaPlgs2
Atmósfera
A nivel del mar Pr 14.7 Lbsaplgs2
Aceleración de la gravedad
11RELACION CILINDRO CARRERA (p. 10)
- CILINDRO
- El diámetro interior del cilindro
- Medido a una precisión de .001
- CARRERA
- Es el desplazamiento del pistón desde el PMS al
PMI o viceversa.
12DESPLAZAMIENTO DEL MOTOR
- Ej. Cilindro 4.001
- Carrera 3.480
- Motor de 8 cilindros
- Cual es el desplazamiento cúbico del Motor?V
?r² x HV 3.14 (2) ² x 3.480 x cil.V
349.865 Plgs3 o 350 Plgs3.
13MOTOR CUADRADO (p. 10)
- Cuando el diámetro interior del cilindro es igual
a la carrera.
4
4
14MOTOR SOBRECUADRADO
- Cuando el Øint. del cilindro es mayor que la
carrera, por consiguiente, el pistón tiene menos
recorrido. - Son encontrados típicamente en motores automotriz
y altas aceleraciones. - Típicamente son de motores pequeños 327, 350,
400 GM
4
3
15MOTOR SUBCUADRADO
- Cuando el Øint. del cilindro es menor quela
carrera. - Grandes torques de salida a bajas rpm.
- Son hallados sobre grandes, pequeños motores en
movimiento. - Motores de bloques grandes 396, 427, 454 son
determinados por su peso y dimensiones externas,
no el desplazamiento en Plgs3.
3
4
16VOLUMEN DE LA HOLGURA
- Es el volumen remanente sobre el pistón, cuando
este esta en el PMS.
Holgura
Pistón _at_ PMS
Carrera
17COMPRESSION RATIO
- Is how much air/fuel mixture is compressed by
volume. - It is the ratio of the total volume of the
cylinder and combustion chamber clearance at BDC
compared to the clearance volume at TDC.
What would the compression ratio be in this
example?
18COMPRESSION RATIO
What would the compression ratio be in this
example?
151
19VOLUMETRIC EFFICIENCY (p. 11)
- The ratio expressed as a percentage of the volume
of atmospheric air drawn into the cylinder on the
intake stroke (4 stroke natural aspiration)
compared to the displacement. - VE Actual Output x 100
- Theoretical Output
20SCAVENGE EFFICIENCY
- It is the ratio expressed as a percentage of the
fresh air contained in the cylinder to the total
volume of air and exhaust gases in the cylinder
at the time the port closes. - Associated with two-stroke engines.
21THERMAL EFFICIENCY
- States how well the engine changes fuel energy
into mechanical energy. - Most engines are about 25 to 35 efficient.
(Most goes out the exhaust).
22BASIC ENGINE OPERATION (p. 12)
- INTERNAL COMBUSTION ENGINES
- Fuel is burnt inside the engine in the cylinders.
23INTERNAL COMBUSTION ENGINES
- The 3 main requirements to allow fuel to burn in
an engine are Fuel, Air and Ignition. -
24INTERNAL COMBUSTION ENGINES
- The compression process generates heat, in some
cases it is enough to ignite the mixture without
a spark. (Diesel engine).
25INTERNAL COMBUSTION ENGINES
- Upon the power stroke, the piston transfers the
energy to the connecting rod which then is
transferred to the crankshaft into rotary motion.
26Four Stroke (Cycle) Engines (p. 13 Fig. 8)
- On a 4 cycle engine, it takes 720 degrees of the
crank to rotate to complete 1 cycle.
27Four Stroke (Cycle) Engines
- On the intake stroke, the intake valve opens
before the piston reaches TDC (valve overlap) and
begins to move downwards pulling air/fuel mixture
into the cylinder.
28Four Stroke (Cycle) Engines
- Slightly past BDC, the intake valve closes and
the piston moves upward compressing the air/fuel
mixture.
29Four Stroke (Cycle) Engines
- The air/fuel mixture is ignited at TDC (both
valves are still closed compression stroke).
30Four Stroke (Cycle) Engines
- The piston moves past TDC as complete burning of
the air/fuel mixture begins to take place. - The expanding gases push the piston downward in
the cylinder producing power (power stroke).
31Four Stroke (Cycle) Engines
- Slightly before the piston reaches BDC, the
exhaust valve opens and the piston pushes the
burned gases out of the cylinder as it moves up
(exhaust stroke).
32Four Stroke (Cycle) Engines
- As the piston nears TDC, the exhaust valve starts
closing and the intake valve starts opening and
the cycle begins again. This is known as valve
overlap and occurs at the end of the exhaust
stroke.
33Four Stroke (Cycle) Engines
34Four Stroke (Cycle) Engines
35TWO STROKE (CYCLE) ENGINES (p.15-fig. 9)
- Two stroke engines complete one cycle in 360
degrees. - 2 stroke engines may use valves or ports.
36TWO STROKE (CYCLE) ENGINES
- When the piston is moving downward, spent gases
begin leaving the piston cylinder.
37TWO STROKE (CYCLE) ENGINES
- The air/fuel mixture begins entering the cylinder
close to the bottom of the stroke.
38TWO STROKE (CYCLE) ENGINES
- As the piston starts moving upward, air/fuel is
still entering the piston chamber but is stopped
early in the stroke. - The remainder of the stroke is used to compress
the air/fuel mixture in the piston chamber.
39TWO STROKE (CYCLE) ENGINES
- Near TDC, the mixture is ignited and the
expanding gases begin to push the piston
downwards.
40TWO STROKE (CYCLE) ENGINES
- Near the end of the cycle, the exhaust valve (or
port) opens and the spent gases begin exhausting. - 2 stroke engines need to be artificially
aspirated to force out the exhaust gases and to
push in the fresh air/fuel mix.
41TWO STROKE (CYCLE) ENGINES
- The intake valve (or port) opens while the piston
is still moving downward and the cycle begins
again.
42TWO STROKE (CYCLE) ENGINES
43TWO STROKE vs. FOUR STROKE
- simpler and lighter
- do not have valves
- fire once every revolution, (75 more hp than 4
stroke) - can work in any orientation
- not as efficient as 4 stroke
- fire once every two revolutions
- More efficient than 2 stroke
- Better fuel consumption
- No mixing oil/fuel
44CRANKSHAFT ROTATION
- Is determined as if viewing the engine from the
main power takeoff or flywheel end. (Rear) - If the engine turns to the right its rotation
clockwise (CW). - If engine rotates to the left its rotation is
counterclockwise (CCW).
45NUMBERING OF CYLINDERS
46FIRING ORDER (p. 17)
47FIRING ORDER
- The position of the crankshaft throws and the
lobes on the camshaft determine the firing order
of an engine. - The order is designed to give an even number of
pulses throughout the complete rotation of the
crankshaft. - This is the sequence of order for the cylinders
to receive ignition.
48RUNNING MATES (Fig. 11)
- This applies to four stroke engines only because
every cylinder fires in one complete revolution
(360 degrees) on 2 stroke engines. - Running mates refer to pistons which reach TDC
simultaneously, but only one fires. (720 cycle) - Assists in balancing of the crank and pistons.
- Running mate arrangements
- 4 cyl. Inline engine 1-4, 2-3.
- 8 cyl. Inline engine 1-8, 2-7, 3-6, 4-5.
- V 6 engine 1-6, 2-5, 3-4.
49RUNNING MATES (Crankshaft Throws)
50ENGINE CLASSIFICATION (p. 18)
- Engines are classified by
- cylinder and crankshaft arrangements.
- valve arrangement.
- position of camshaft.
- cooling methods.
- induction methods.
- engine speeds.
- operating (stroke) cycle.
- ignition methods and type of fuel consumed.