Arrangement of Electrons in Atoms - PowerPoint PPT Presentation

1 / 52
About This Presentation
Title:

Arrangement of Electrons in Atoms

Description:

Chapter 4 Arrangement of Electrons in Atoms – PowerPoint PPT presentation

Number of Views:82
Avg rating:3.0/5.0
Slides: 53
Provided by: Owne31078
Category:

less

Transcript and Presenter's Notes

Title: Arrangement of Electrons in Atoms


1
Chapter 4
  • Arrangement of Electrons in Atoms

2
4-1 The Development of a New Atomic Model
  • Rutherfords model did not explain where
    electrons were what prevented electrons from
    being drawn into nucleus?
  • New model arose from experiments involving
    absorption and emission of light by matter

3
4-1 Properties of Light
  • Light can behave as a wave
  • Visible light is a kind of electromagnetic
    radiation (energy that exhibits wavelike behavior
    as it travels through space)
  • EM radiation includes X rays, UV and IR light,
    microwaves, radiowaves

4
4-1 Properties of Light
  • All EM radiation moves at the same speed in a
    vacuum 3.0 x 108 m/s
  • Wave motion is repetitive
  • Wavelength (?) distance between corresponding
    points on adjacent waves (m, cm, nm)
  • Frequency (v) number of waves that pass a given
    point in a specific time, usually one second
    (1/s, Hz)

5
4-1 Properties of Light
6
4-1 Properties of Light
  • Since speed is constant, frequency and wavelength
    are related to each other mathematically
  • c ?v
  • Wavelength and frequency are INVERSELY
    proportional because their product is a constant.

7
4-1 Sample Problem
  • Determine the frequency of light with wavelength
    550 nm.
  • Convert nm to m
  • Use formula c?? to determine v

8
4-1 The Photoelectric Effect (Light as a Particle)
  • 1900s an experiment that cannot be explained by
    the wave theory of light
  • Photoelectric effect refers to the emission of
    electrons from a metal surface when light shines
    on the metal
  • For a given metal, no electrons are emitted if
    the lights frequency is below a certain minimum,
    regardless of how intense the light or how long
    it is shone on the metal

9
(No Transcript)
10
4-1 The Photoelectric Effect
  • Wave theory predicts that ANY frequency of light
    could supply enough energy to eject an electron
    from the metal surface
  • Wave theory cant explain why light must be of
    certain minimum frequency

11
4-1 The Particle Description of Light
  • 1900 Max Planck studying emission of light by
    hot objects
  • Proposed matter does not emit energy continuously
    but in small, specific amounts called quanta
  • Idea is called Quantum Theory. Planck wins Nobel
    prize in 1918 for his work.

12
4-1 The Particle Description of Light
  • Quantum minimum quantity of energy that can be
    lost or gained by an atom
  • Energy of a quantum is related to frequency
  • E hv

13
4-1 The Particle Description of Light
  • 1905 Einstein light has a dual nature
    sometimes it acts like a wave, sometimes it acts
    like a particle
  • Light has wave properties
  • Light is also like a stream of particles, each
    particle carries a quantum of energy
  • Einstein called these particles photons

14
4-1 Explanation for the Photoelectric Effect
  • Electrons are bound to the atom with a certain
    amount of energy.
  • Metal surface must be struck by a photon of light
    carrying at least this amount of energy to knock
    the electron loose.
  • Energy and frequency are directly proportional.
    (Eh?)
  • Only frequencies equal to or greater than the
    threshold frequency will knock an electron off an
    atom.

15
4-1 Sample Problem
  • Calculate the energy associated with a photon of
    light of frequency 4.1 x 1014 Hz.

16
4-1 Hydrogen-Atom Line-Emission Spectrum
  • Spectrum a pattern of energy observed when
    matter absorbs and emits energy
  • Ground state lowest energy state of an atom or
    molecule
  • Excited state state in which atom or molecule
    has higher PE than ground state

17
4-1 Hydrogen-Atom Line-Emission Spectrum
  • Current passed through vacuum tube with hydrogen
    gas inside
  • Pink light passed through prism to separate into
    specific frequencies of light

18
4-1 Hydrogen-Atom Line-Emission Spectrum
  • Why does hydrogen give off only specific
    frequencies of light?
  • 1913 Niels Bohr proposed a model for hydrogen
    atom that linked the atoms electron with photon
    emission
  • Ties line emission spectrum to quantum theory.

19
4-1 Bohr Model of the Hydrogen Atom
  • Electron can circle nucleus only in allowed
    paths, or orbits
  • Orbit closest to nucleus has lowest energy
    (ground state)
  • Orbits farther from nucleus have higher energy
    (excited states)
  • When electron absorbs energy, it jumps to higher
    orbit
  • When electron emits energy, it drops to lower
    orbit

20
4-1 Bohr Model of the Hydrogen Atom
  • Electron can only exist in certain allowed
    orbits.
  • Can only absorb and emit amounts of energy that
    correspond to energy differences between orbits.

21
4-1 Bohr Model of the Hydrogen Atom
  • Bohrs model did not explain the spectra of atoms
    with more than one electron
  • Bohrs theory did not explain the chemical
    behavior of atoms

22
4-2 Electrons as Waves
  • It was already known that light can behave as a
    particle or a wave.
  • 1924 Louis deBroglie asked if electrons could
    also have dual wave-particle nature

23
4-2 deBroglies Hypothesis
  • Electrons are particles but they can act like
    waves
  • A wave confined to a space can only have certain
    frequencies seems to correspond to Bohrs
    quantized electron orbits
  • The electron-wave is confined to a certain space
    the region around the nucleus so
    electron-waves can only have certain frequencies,
    which correspond to certain energies (E hv)

24
4-2 Wave-Particle Duality of Nature
  • Particles can have wave properties.
  • Waves can have particle properties.

25
4-2 Heisenberg Uncertainty Principle
  • If the electron is both a particle and a wave,
    where is it?
  • Werner Heisenberg, German physicist, 1927
  • Electrons are detected by hitting them with
    photons, but hitting them changes their position
  • It is impossible to determine simultaneously the
    position and velocity of an electron

26
4-2 The Schrodinger Wave Equation
  • 1926 Erwin Schrodinger uses assumption that
    electron behaves as a wave to describe
    mathematically the wave properties of electrons
    and other very small particles (Quantum theory)

27
4-2 What does it mean?
  • Solutions to the Schrodinger equation are called
    wave functions
  • Wave functions can give probability of finding an
    electron at a particular position in the space
    around the nucleus
  • An orbital is a 3D region around the nucleus that
    indicates the probable location of an electron

28
4-2 Atomic Orbitals and Quantum Numbers
  • Quantum numbers specify the properties of atomic
    orbitals and the properties of electrons in
    orbitals.
  • Each electron in an atom can be assigned a set of
    four quantum numbers.

29
4-2 The Principal Quantum Number
  • Symbolized by n
  • Indicates the main energy level occupied by an
    electron
  • Values of n are positive integers (ex. n 1 is
    the first energy level)
  • Principal quantum number also gives approximate
    distance from nucleus/size of energy level or
    shell
  • Total number of electrons that can exist in a
    given energy level, n, is equal to 2n2.

Energy level, n Maximum number of electrons, 2n2
1 2
2 8
3 18
4 32
5 50
6 72
7 98
30
4-2 Angular Momentum Quantum Number
  • Symbolized by l
  • Indicates the shape of the orbital
  • sublevels
  • For each energy level, n, the number of orbital
    shapes possible is equal to n
  • The first four shapes are given letter symbols
    (s, p, d and f)

31
(No Transcript)
32
4-2 Magnetic Quantum Number
  • Symbolized by m
  • Indicates the orientation of an orbital around
    the nucleus

33
s orbital (1 orientation)
p orbital (3 orientations)
d orbitals (5 orientations)
34
f orbitals (7 orientations)
35
sublevel number of orbitals available number of electrons sublevel can hold
s 1 2
p 3 6
d 5 10
f 7 14
36
4-2 Spin Quantum Numbers
  • Electrons in orbitals spin on internal axes.
  • When charged bodies spin, they induce a magnetic
    field.
  • An electron can spin in one of two possible
    directions.
  • The spin quantum number has two possible values,
    ½ and ½
  • A single orbital can hold a total of two
    electrons, which MUST have opposite spins.

37
(No Transcript)
38
(No Transcript)
39
4-3 Electron Configuration
  • The arrangement of electrons in an atom
  • Assigns an energy level and sublevel to each
    electron in an atom.

40
4-3 Rules Governing Electron Configurations
  • The Aufbau Principle an electron occupies the
    lowest-energy orbital available. (aufbau is
    German for building up
  • Electrons fill low energy orbitals before filling
    higher energy orbitals.

41
4-3 Electron Configuration
  • 1s has the lowest energy.
  • Energies of sublevels in different main energy
    levels begin to overlap in n3
  • Use orbital filling diagram to determine order in
    which sublevels are filled.

start
42
4-3 Rules Governing Electron Configurations
  • Pauli Exclusion Principle no two electrons in
    the same atom can have the same set of four
    quantum numbers
  • In other words, if two electrons are going to
    occupy the same orbital, they must have opposite
    spin.

-let horizontal line represent orbital -an up
arrow and a down arrow represent two electrons of
opposite spin
43
4-3 Rules Governing Electron Configurations
  • Hunds rule orbitals of equal energy
    (degenerate orbitals) are occupied by one
    electron before any orbital is occupied by a
    second electron, and all electrons in singly
    occupied orbitals must have the same spin
  • Bus seat rule

44
4-3 Ways to Represent Electron Configuration
Examples Na P Br Rb K Ar
  • Electron Configuration Notation
  • Assigns each electron to an energy level and a
    sublevel.

45
4-3 Electron Configuration Sample Problems
  • Name the elements indicated by the following
    electron configurations
  • 1s22s22p63s23p5
  • 1s22s22p63s23p64s23d5

46
4-3 Electron Configuration Sample Problems
  • Write the electron configuration for an element
    that has the following number of electrons
  • 7
  • 14
  • 19
  • 33

47
4-3 Ways to Represent Electron Configuration
  • Orbital Notation uses lines and arrows to
    represent orbitals and electrons
  • Example Write the orbital notations for nitrogen
    and oxygen.

N O
48
4-3 Ways to Represent Electron Configuration
  • Noble Gas Notation to simplify an elements
    electron configuration, use the preceding noble
    gas as shorthand to indicate all the electrons
    possessed by that noble gas
  • Example Ne and Na

49
4-3 Valence Electrons
How many valence electrons does sodium
have? Bromine? Silicon?
  • Valence electrons are electrons in the outermost
    energy level of an atom, farthest from the
    nucleus
  • They are important because they are the electrons
    that are usually involved in chemical reactions.

50
4-3 Electron Configurations with Special Stability
  • Octet the outer energy level is considered
    filled when the s and p sublevels are completely
    filled with 8 electrons
  • A filled outer energy level (8 electrons) is a
    very stable electron configuration.
  • The noble gases have filled outer energy levels.
    This is why they are unreactive.

51
4-3 Electron Configurations with Special Stability
Chromium Copper Molybdenum Silver
  • Filled and half-filled sublevels have special
    stability (especially d).
  • This fact sometimes results in electron
    configurations that deviate from the Aufbau
    principle.

52
Pig boots!
Write a Comment
User Comments (0)
About PowerShow.com