Funding - PowerPoint PPT Presentation

About This Presentation
Title:

Funding

Description:

Excess Electrons in Water: Clusters, Interfaces, and the Bulk Laszlo Turi Adam Madarasz (Eotvos Loring U., Budapest) Wen-Shyan Sheu (Fu-Jen University, Taipei) – PowerPoint PPT presentation

Number of Views:60
Avg rating:3.0/5.0
Slides: 16
Provided by: uta132
Category:
Tags: aadd | funding | model

less

Transcript and Presenter's Notes

Title: Funding


1
Excess Electrons in Water Clusters, Interfaces,
and the Bulk
Laszlo Turi Adam Madarasz (Eotvos Loring U.,
Budapest) Wen-Shyan Sheu (Fu-Jen University,
Taipei) Daniel Borgis (Universite dEvry / ENS
Paris)
  • Funding
  • National Science Foundation
  • R. A. Welch Foundation
  • Hungarian Science Foundation
  • Eötvös Fellowship
  • Bolyai János Fellowship
  • Széchenyi Professor Fellowship

2
Water Cluster Anions distinct isomers
  • Systematic variations
  • What are the characteristic properties which
    distinguish the different classes?
  • Common sets of structural motifs?
  • Backing pressure/thermodynamic conditions.
    Non-equilibrium?

3
Anionic clusters and hydrated electronslocalizat
ion mode/binding motif and structure
?
clusters
infinite cluster
?
4
The Toolkit for Mixed Quantum-Classical MD
Simulations
quantum mechanical e- classical solvent
molecules
  • Components
  • N classical water molecules (SPC model internal
    flexibility)
  • the excess electron (wave function represented on
    dual k,r grid)
  • the electron-molecule interaction
    (pseudopotential)
  • the force acting on the molecular nuclei
  • classical force (from the solvent) quantum
    force (from the solute)
  • FH2O FQ
  • A sampling scheme (adiabatic) time evolution of
    the system

Turi, L. Gaigeot, M.-P. Levy, N. Borgis,
D. J. Chem. Phys., 2001, 114, 7805. Turi,
L. Borgis, D. J. Chem. Phys., 2002, 117, 6186.
5
Applicability of the Pseudopotential
E0 -3.12 eV ? Es-p,max 1.92 eV (vs.
1.72) RG ltr2gt1/2 2.4 A ?
  • Bulk
  • VDE for n12 clusters
  • MP2/6-31(13)G
  • vs.
  • the pseudopotential

Turi, L. Madarász, Á. Rossky, P. J. JCP 125,
014308 (2006).
6
Cluster Simulations Surface states vs. internal
states
n 20, 30, 45, 66, 104, 200 500, 1000 nominal
T 100K, 200K, 300K
(s ? p n 45. T 200K)
L. Turi, W.-S. Sheu, P. J. Rossky, Science 309,
914 (2005), ibid. 310, 1719 (2005).
7
Average surface state energetic behavior vs.
interior states and vs. expt.
old lines, new points n 200, 500,
1000 (surface and internal at 200K)
expt. (M. Johnson coworkers)
- spectral gap
(expt)
internal
(expt)
E0
internal
0
0.1
0.3
0.2
n -1/3
8
Electron radius and kinetic energy
9
Hydrated electrons at water/vacuum
interfacesthe infinite cluster limit
  • Cases
  • Ambient water surface (300 K)
  • Supercooled water surface (200 K)
  • Hexagonal ice surface (200 K)
  • Amorphous solid (quenched) water surface (100 K)
  • Starting point charge-neutral equilibrium
    surfaces
  • Dynamic simulations of surface accommodation
  • and final states
  • Localization analysis

Á. Madarász, P. J. Rossky, L. Turi, JCP 126,
234707 (2007).
10
Interior and surface hydrated electrons at
liquid water/vacuum interfaces
  • (meta)stable surface states at 200 K
  • vs. spontaneous internal states at 300 K

Dz(t)
10 ps
11
Surface vs. Internal states
Internal state bulk hydrated electron Surface state supercooled water interface
300 K Simulation temperature 200 K
2.4 Å Radius of the electron 2.7 Å
-3.1 eV Ground state energy -2.6 eV
1.9 eV Spectral maximum 1.5 eV
16 Coordination number (lt5 Å) 10
12
Alternative surface states
fully reorganized -OH
partly reorganized from dangling -OH
restricted reorganization otherwise occupied -OH
partly reorganized -OH
Bulk Supercooled water interface Amorphous solid water interface ice Ih interface
Temperature 300 K 200 K 100 K 200 K
Electron radius 2.4 Å 2.7 Å 3.0 Å 2.6 Å
Ground state energy -3.1 eV -2.6 eV -1.6 eV -2.7 eV
Spectral maximum 1.9 eV 1.5 eV 1 eV 1.6 eV
13
Donor-Acceptor characterization of water molecules
1 AA 2 AD 3 DD 4 AD ice AADD
strong electron binding
Concept N. I. Hammer, J.-W. Shin, J. M.
Headrick, E. G. Diken, J. R. Roscioli,
G. H. Weddle, and M. A. Johnson, Science,
306, 675 (2004).
14
Hydrated electrons at solid water interfaces
Ice Ih, 200K
  • H-bonding structure analysis
  • AA (solid) and AAD (dashed)

AAD
AA
ASW, 100K
AAD
15
Equilibrium and non-equilibrium preparation of
cluster anions
  • quenched clusters (QC)
  • Prepare warm (ambient) neutral equilibrium
    structures
  • ? quench them gradually to a sequence
    of lower Ts
  • Cluster surface site analysis
  • metastable clusters (MC)
  • Alternative preparation protocol assemble the
    neutral clusters at very low T ? warm them up
    gradually to the desired higher T.
  • metastable clusters have never seen annealing
    temperatures
  • Add the electron and relax (for 200 ps).
Write a Comment
User Comments (0)
About PowerShow.com