Title: Differential Momentum Balance
1Differential Momentum Balance
Rate of accumulation of momentum
Sum of forces acting on system
Rate of momentum out
Rate of momentum in
-
(15.6)
- Estimation of net rate of momentum out of element
z
x
y
- Estimation of forces acting on the element
2Reminder Definition of stress
- Stress force per unit area (F/A)
- Normal stress acts perpendicular to the surface
(Fnormal force).
F
F
F
F
A
A
Tensile causes elongation
Compressive causes shrinkage
- Shear stress acts tangentially to the surface
(Ftangential force).
F
A
F
3Forces acting on a differential element (3-D)
P
szz
z
tzx
tzy
txz
x
y
tyz
P
sxx
P
txy
tyx
syy
- The first subscript indicates the direction of
the normal to the plane on which the stress acts. - The second subscript indicates the direction of
the stress.
4Differential Momentum Balance
- Estimation of forces acting on the element
z
x
y
5Equations of Motion
- x-component of momentum equation
(15.7a)
- y-component of momentum equation
(15.7b)
- z-component of momentum equation
(15.7c)
6Stress Deformation relationship
Reminder Newtons law in one direction
- In general the stresses are linearly related to
the rates of deformation - (shear stress) (viscosity)x(rate of shear
strain) - In Cartesian coordinates, for the 3-D case
(15.8)
7Navier-Stokes Equations
- Taking into account the stress-deformation
relationships (Eq. 15.8) and making the following
assumptions - The fluid has constant density
- The flow is laminar throughout
- The fluid is Newtonian
- we obtain the Navier-Stokes Equations
8Navier-Stokes Equations
(15.9a)
(15.9b)
(15.9c)
9Navier-Stokes Equations
In cylindrical (polar) coordinates
(15.10a)
(15.10b)
10Navier-Stokes Equations
(15.10c)
11Solution Procedure
- Make reasonable simplifying assumptions (i.e.
steady state, incompressible flow, coordinate
direction of flow) - Write down continuity and momentum (or
Navier-Stokes) equations and simplify them
according to the assumptions of Step 1. - Integrate the simplified equations.
- Invoke boundary conditions in order to evaluate
integration constants obtained in Step 3. - No-slip condition
- Continuity of velocity
- Continuity of shear stress
- Solve for pressure and velocity. Derive shear
stress distributions if desired. Apply numerical
values.
12Example1 Drag (Couette) flow between two
parallel plates
- Consider two flat parallel plates separated by a
distance b as shown in the figure. The top plate
moves in the x-direction at a constant speed V,
while the bottom plate remains stationary. The
fluid between the plates is assumed
incompressible. As the top plate moves the fluid
is dragged along. This type of flow is often
referred as Couette flow. It has important
applications in lubrication applications (such as
rotating journal bearings) and instruments for
measurement of viscosity. - Prove that the velocity profile for this type of
flow is linear. What is the volumetric flow rate?
13Sample Worksheet
- Step 1 State assumptions
- - Steady-state (all derivatives with respect to
time 0), incompressible flow (r const.). - - Decide on coordinate system, determine
direction of flow, identify non-zero velocity
components. - Â - Inspect for any other reasonable assumptions.
- Â
- Step 2 Write down continuity (chose from
15.1-15.5) and Navier-Stokes equations (chose
from 15.9 or 15.10) for the appropriate
coordinate system and direction of flow. - Then simplify them, according to assumptions of
Step 1. - Step 3 Integrate the simplified Navier-Stokes
equation.
14Sample Worksheet
- Step 4 Identify appropriate boundary conditions.
Use them to determine the integration constants
obtained above. - Step 5 Obtain velocity profile.
- Step 6 (If needed) Obtain volumetric flow rate
by integrating - For flow in channels (Wwidth)
- Â
- - For flow through circular cross-sections
- Step 7 (If needed) Obtain shear stress
distributions, chosing the appropriate
stress-deformation relationship, from eq (15.8)
and simplifying it.
15Example 2 Pressure driven (Poiseuille) flow
between parallel plates
- The figure below shows a fluid of viscosity m
that flows in the x direction between two
rectangular plates, whose width is very large in
the z direction when compared to their separation
in the y direction. Such a situation could occur
in a die when a polymer is being extruded at the
exit into a sheet, which is subsequently cooled
and solidified. We will determine the
relationship between the flow rate and the
pressure drop between the inlet and exit,
together with several other quantities of
interest.
16Example 2 Pressure driven flow between parallel
plates
- Now solve the following problem
- A highly viscous fluid having a viscosity of 950
Pa.s and density of 780 kg/m3 is flowing through
a rectangular (flat) die having length of 25 cm,
width of 1.75 m and gap of 1.8 mm. The pressure
drop for this flow is 55.6 MPa. What is the mass
flow rate? How much is the shear stress at the
wall?
17Summary of some useful results
- Steady pressure driven, laminar flow between
fixed parallel plates
W
L
Velocity Profile
where
Volumetric flow rate
18Summary of some useful results
- Steady, laminar, Drag (Couette) flow between
parallel plates
Velocity profile
Volumetric flow rate
19Summary of some useful results
- Steady, pressure driven, laminar flow in circular
tubes
Velocity Profile
where
Volumetric flow rate
20Summary of some useful results
- Steady, Pressure driven, Axial, Laminar flow in
an Annulus
r
Vz
z
Vz