Simulating structure and physical properties of complex metallic alloys - PowerPoint PPT Presentation

1 / 75
About This Presentation
Title:

Simulating structure and physical properties of complex metallic alloys

Description:

Johannes Roth. Institut f r Theoretische und Angewandte Physik der Universit t Stuttgart ... Classical molecular dynamics simulations and IMD. Model potentials ... – PowerPoint PPT presentation

Number of Views:370
Avg rating:3.0/5.0
Slides: 76
Provided by: hansrain
Category:

less

Transcript and Presenter's Notes

Title: Simulating structure and physical properties of complex metallic alloys


1
Simulating structure and physical properties of
complex metallic alloys
  • Hans-Rainer Trebin
  • Peter Brommer
  • Michael Engel
  • Franz Gähler
  • Stephen Hocker
  • Frohmut Rösch
  • Johannes Roth

Institut für Theoretische und Angewandte Physik
der Universität Stuttgart Euroschool Ljubljana
26 May 2007
2
Outline
  • Numerical simulations of matter
  • Classical molecular dynamics simulations and IMD
  • Model potentials
  • Realistic potentials
  • potfit for EAM
  • Simulations of physical properties (also CaCd6!)

3
1. Numerical simulations of matter
4
Basic equation for a solid
5
Basic equations continued
6
Ab-initio molecular dynamics
d-Al-Cu-Co
7
2. Classical molecular dynamics simulations and
IMD
8
Intention
  • Calculate
  • Motion of particles in a many-body system under
    specified interactions in classical approximation

9
Step 1
  • Fix structure in the form of particle coordinates
  • Random
  • Model structure
  • From real experiment

10
Step 2
  • Determine interactions
  • From electronic structure calculations
    (ab-initio, force matching)
  • Model potentials
  • Potentials two-, three-, many-body

11
Step 3
  • Fix boundary conditions
  • Open boundaries
  • Periodic boundaries
  • Fixed boundaries
  • Other (spherical, twisted, Lees-Edwards)

12
Step 4
  • Solve Newtons equations
  • Discretize in time
  • Choose integrator

13
Atomistic Simulations
14
Verlet and Leap-frog algorithm
15
Step 5
  • Influence from outside
  • Temperature (numerical thermostats)
  • Pressure (numerical barostats)
  • Stress, strain, flow

16
Nosé-Hoover thermostat
17
Volume control barostat
18
Lees-Edwards boundary conditions
19
Step 6
  • Extract data
  • Potential energy, kinetic energy, total energy
  • Free energy
  • Total and local stress
  • Displacement fields
  • Elastic coefficients
  • Transport coefficients (diffusion, heat)
  • Correlation functions (static, dynamic)
  • Diffraction pattern (static, dynamic)

20
Step 7
  • Visualize data
  • Direct plot of atoms
  • Color code for observables
  • Selective visualization in 3d
  • Animations

21
Equilibrium problems
  • Grain boundary structures
  • Phason dynamics

22
Nonequilibrium problems
  • Plastic deformation
  • Fracture
  • Shock waves

23
IMD (ITAP Molecular Dynamics)
  • Molecular dynamics program package
  • Established 1996, continuously improved and
    extended since
  • Easily portable and extendable
  • Workstations, clusters, massively parallel
    supercomputers
  • Parallelized with Message Passing Interface
  • Many effective potentials applicable
  • Simple integrators (Verlet, Leap-frog) with
    energy stability over long times
  • Timesteps a few fs, computation time a few µs
    for each time step and atom
  • Scalable up to thousands of CPUs
  • Available at
  • http//www.itap.physik.uni-stuttgart.de/imd

24
World records in particle numbers
25
World records in particle numbers
IBM BlueGene/L, 65.536 nodes with 2 IBM PowerPC
440 processors, 360 Tflop/s
26
3. Model potentialsa) Lennard-Jones
potentialb) Dzugutov potentialc)
Lennard-Jones-Gauss potential
27
Lennard-Jones pair potential
28
Structures with LJ potentials
29
Ground state for LJ-potentials
30
Dzugutov potential
bcc fcc s-phase dodecagonal qc - glass
31
Lennard-Jones-Gauss potential
32
Phase diagram with LJG potential
33
Diffracton pattern decagonal random tiling
34
Phase transition quasicrystal - crystal
35
4. Realistic potentialsa) Advanced pair
potentialsb) Embedded Atom potentialsc) MEAM,
ADP etc.
36
Advanced two-body potentials
37
Embedded-atom potentials (EAM)
38
5. potfit for EAM
39
Embedded-atom potentials (EAM)
potfit Fi, fj, Fij arbitrary
spline-interpolated, parameterized functions with
about 10 nodes
40
potfit
  • Select reference configurations of a small system
  • Determine forces between particles, energies and
    stresses from quantum mechanics (VASP)
  • Calculate same data from MD with EAM potentials
  • Sum squares of differences
  • Minimize squares by parameter fits Force
    matching
  • Minimization first by Simulated Annealing, then
    by Conjugate Gradients

P. Brommer and F. Gähler 2007 Potfit effective
potentials from ab-initio dataModelling Simul.
Mater. Sci. Eng. 15 (3) 295-304
41
6. Simulations of physical propertiesa)
Diffusion in d-Al-Ni-Cob) Dynamical structure
factor for Zn2Mgc) Cracks in NbCr2d)
Order-disorder transition in CaCd6
42
i) Diffusion in d-AlNiCo
43
EAM potential for Al-Ni-Co
44
Moriarty-Widom pair potentials Al-Ni-Co und
Al-Cu-Co
45
Time averaged probability density maps for
d-Al-Ni-Co
46
Diffusion channels in d-Al-Ni-Co
47
Diffusion in d-Al-Ni-Co
48
Arrhenius diagram d-Al-Ni-Co
49
ii) Dynamical structure factor for Zn2Mg
50
Dynamical structure factor from MD model
calculations
51
Dynamical structure factor Zn2Mg
52
iii) Crack propagation in NbCr2
53
EAM potentials for NbCr2
Lattice constant 6.94 Ã…
ab-initio 6.97 Ã… C11, C12, C44
300, 181, 55 GPa ab-initio
309, 198, 69 GPa 24000 atoms kBTmelt
0.17 eV experimental kBTmelt 0.176
eV Surfaces stable, no evaporation of atoms
54
Surface reconstruction NbCr2
55
Crack propagation NbCr2
56
iv) Order-disorder transition in CdCa6
57
Cluster structure of CaCd6
58
Multiscale algorithm
  • Quantum mechanics
  • Forces, energies, stresses of 34 reference
    configurations (phases with less atoms in the
    unit cell, expanded, heated). EAM potentials
    fitted thus that they reproduce the data.
  • Molecular dynamics
  • Structure calculations with different
    orientations of the tetrahedra, deformation of
    the cluster shells, cluster binding energies Ea
    (26 types of two-fold, 16 of three-fold bonds),
    250 clusters (5x5x5 cubic cells).
  • Monte-Carlo simulations
  • Effective Hamiltonian as sum of the binding
    energies. Calculation of equilibrium structures
    of a system of 128 clusters for different
    temperatures. Sharp jump of internal energy at 89
    K! ?S 1 kB per cluster.

59
Order-disorder transition in CaCd6
P. Brommer, F. Gähler, and M. Mihalkovic
2007 Ordering and correlation of cluster
orientations in CaCd6Phil. Mag. in press
60
Order-disorder transition
61
Summary
  • MD method allows to simulate a large variety of
    material properties and dynamical processes at
    the atomic level
  • Large systems accessible Complex Metallic
    Alloys!
  • Necessary Realistic potentials derived from
    quantum mechanical calculations
  • Extensions
  • in space by hybrid methods
  • in time by accelerators (MC, HMC, DPD, SRD, )

62
Time scales
63
(No Transcript)
64
Cutoff and neighbour lists
  • Force calculation O(N2), 80 runtime
  • Short range potentials allow decomposition into
    cells
  • Only atoms in adjacent cells interact
  • Each cell pair only once considered
  • Run time O(N)

65
Stillinger-Weber potentials
66
Microconvergence
  • Algorithm for energy relaxation
  • Rapid cooling mechanism

67
Integration of motion
68
Three-body Tersoff potentials
attractive
repulsive
Complicated function of number and type of k atoms
69
Explicit form of Tersoff-potential
70
Fracture planes perpendicular to fivefold axes
71
Long-range interactions(Coulomb- and polar)
By Greengard and Rokhlin Short range
interactions are calculated directly. For long
range interactions a multipole expansion is
performed on an octal tree
By Eastwood Short range interactions are
calculated directly. For long range interactions
Poisson equation is solved on a mesh
  • Ewald sum method
  • Reaction field method
  • Particle-particle/particle-mesh (PPPM)
  • Fast multipole method

72
Dynamical structure factor Zn2Mg
Longitudinal phonons in the hexagonal plane
73
Simulationskontrolle
  • Gleichgewicht-Ensembles NVE, NVT, NPT
  • Nichtgleichgewicht Scherfluss, Dehnung,
    Plastische Verformung, Rissausbreitung mit
    Stadion-Dämpfung
  • Steuerung einzelner Atome (Fixierung,
    Sonderkräfte)

Datenausgabe
  • Nur Atome mit besonderen Eigenschaften Energie,
    Koordination, Auslenkung aus der
    Referenzkonfiguration
  • Mittelwerte über kleine Raumbereiche

74
Skalierung
  • Hochleistungsnetzwerk mit niedriger Latenz nötig
  • Tests auf IBM BlueGene/L Lineare Skalierung bis
    zu tausenden von CPUs

75
Elaboration of potentials
  • Force Matching Method
  • Select typical configurations
  • Calculate wavefunctions, forces on ions
  • Fit parametrized potentials (e.g. EAM)
Write a Comment
User Comments (0)
About PowerShow.com