Title: Simulating structure and physical properties of complex metallic alloys
1Simulating structure and physical properties of
complex metallic alloys
- Hans-Rainer Trebin
- Peter Brommer
- Michael Engel
- Franz Gähler
- Stephen Hocker
- Frohmut Rösch
- Johannes Roth
Institut für Theoretische und Angewandte Physik
der Universität Stuttgart Euroschool Ljubljana
26 May 2007
2Outline
- Numerical simulations of matter
- Classical molecular dynamics simulations and IMD
- Model potentials
- Realistic potentials
- potfit for EAM
- Simulations of physical properties (also CaCd6!)
31. Numerical simulations of matter
4Basic equation for a solid
5Basic equations continued
6Ab-initio molecular dynamics
d-Al-Cu-Co
72. Classical molecular dynamics simulations and
IMD
8Intention
- Calculate
- Motion of particles in a many-body system under
specified interactions in classical approximation
9Step 1
- Fix structure in the form of particle coordinates
- Random
- Model structure
- From real experiment
10Step 2
- Determine interactions
- From electronic structure calculations
(ab-initio, force matching) - Model potentials
- Potentials two-, three-, many-body
11Step 3
- Fix boundary conditions
- Open boundaries
- Periodic boundaries
- Fixed boundaries
- Other (spherical, twisted, Lees-Edwards)
12Step 4
- Solve Newtons equations
- Discretize in time
- Choose integrator
13Atomistic Simulations
14Verlet and Leap-frog algorithm
15Step 5
- Influence from outside
- Temperature (numerical thermostats)
- Pressure (numerical barostats)
- Stress, strain, flow
16Nosé-Hoover thermostat
17Volume control barostat
18Lees-Edwards boundary conditions
19Step 6
- Extract data
- Potential energy, kinetic energy, total energy
- Free energy
- Total and local stress
- Displacement fields
- Elastic coefficients
- Transport coefficients (diffusion, heat)
- Correlation functions (static, dynamic)
- Diffraction pattern (static, dynamic)
20Step 7
- Visualize data
- Direct plot of atoms
- Color code for observables
- Selective visualization in 3d
- Animations
21Equilibrium problems
- Grain boundary structures
22Nonequilibrium problems
- Plastic deformation
- Fracture
- Shock waves
23IMD (ITAP Molecular Dynamics)
- Molecular dynamics program package
- Established 1996, continuously improved and
extended since - Easily portable and extendable
- Workstations, clusters, massively parallel
supercomputers - Parallelized with Message Passing Interface
- Many effective potentials applicable
- Simple integrators (Verlet, Leap-frog) with
energy stability over long times - Timesteps a few fs, computation time a few µs
for each time step and atom - Scalable up to thousands of CPUs
- Available at
- http//www.itap.physik.uni-stuttgart.de/imd
24World records in particle numbers
25World records in particle numbers
IBM BlueGene/L, 65.536 nodes with 2 IBM PowerPC
440 processors, 360 Tflop/s
263. Model potentialsa) Lennard-Jones
potentialb) Dzugutov potentialc)
Lennard-Jones-Gauss potential
27Lennard-Jones pair potential
28Structures with LJ potentials
29Ground state for LJ-potentials
30Dzugutov potential
bcc fcc s-phase dodecagonal qc - glass
31Lennard-Jones-Gauss potential
32Phase diagram with LJG potential
33Diffracton pattern decagonal random tiling
34Phase transition quasicrystal - crystal
354. Realistic potentialsa) Advanced pair
potentialsb) Embedded Atom potentialsc) MEAM,
ADP etc.
36Advanced two-body potentials
37Embedded-atom potentials (EAM)
385. potfit for EAM
39Embedded-atom potentials (EAM)
potfit Fi, fj, Fij arbitrary
spline-interpolated, parameterized functions with
about 10 nodes
40potfit
- Select reference configurations of a small system
- Determine forces between particles, energies and
stresses from quantum mechanics (VASP) - Calculate same data from MD with EAM potentials
- Sum squares of differences
- Minimize squares by parameter fits Force
matching - Minimization first by Simulated Annealing, then
by Conjugate Gradients
P. Brommer and F. Gähler 2007 Potfit effective
potentials from ab-initio dataModelling Simul.
Mater. Sci. Eng. 15 (3) 295-304
416. Simulations of physical propertiesa)
Diffusion in d-Al-Ni-Cob) Dynamical structure
factor for Zn2Mgc) Cracks in NbCr2d)
Order-disorder transition in CaCd6
42i) Diffusion in d-AlNiCo
43EAM potential for Al-Ni-Co
44Moriarty-Widom pair potentials Al-Ni-Co und
Al-Cu-Co
45Time averaged probability density maps for
d-Al-Ni-Co
46Diffusion channels in d-Al-Ni-Co
47Diffusion in d-Al-Ni-Co
48Arrhenius diagram d-Al-Ni-Co
49ii) Dynamical structure factor for Zn2Mg
50Dynamical structure factor from MD model
calculations
51Dynamical structure factor Zn2Mg
52iii) Crack propagation in NbCr2
53EAM potentials for NbCr2
Lattice constant 6.94 Ã…
ab-initio 6.97 Ã… C11, C12, C44
300, 181, 55 GPa ab-initio
309, 198, 69 GPa 24000 atoms kBTmelt
0.17 eV experimental kBTmelt 0.176
eV Surfaces stable, no evaporation of atoms
54Surface reconstruction NbCr2
55Crack propagation NbCr2
56iv) Order-disorder transition in CdCa6
57Cluster structure of CaCd6
58Multiscale algorithm
- Quantum mechanics
- Forces, energies, stresses of 34 reference
configurations (phases with less atoms in the
unit cell, expanded, heated). EAM potentials
fitted thus that they reproduce the data. - Molecular dynamics
- Structure calculations with different
orientations of the tetrahedra, deformation of
the cluster shells, cluster binding energies Ea
(26 types of two-fold, 16 of three-fold bonds),
250 clusters (5x5x5 cubic cells). - Monte-Carlo simulations
- Effective Hamiltonian as sum of the binding
energies. Calculation of equilibrium structures
of a system of 128 clusters for different
temperatures. Sharp jump of internal energy at 89
K! ?S 1 kB per cluster.
59Order-disorder transition in CaCd6
P. Brommer, F. Gähler, and M. Mihalkovic
2007 Ordering and correlation of cluster
orientations in CaCd6Phil. Mag. in press
60Order-disorder transition
61Summary
- MD method allows to simulate a large variety of
material properties and dynamical processes at
the atomic level - Large systems accessible Complex Metallic
Alloys! - Necessary Realistic potentials derived from
quantum mechanical calculations - Extensions
- in space by hybrid methods
- in time by accelerators (MC, HMC, DPD, SRD, )
62Time scales
63(No Transcript)
64Cutoff and neighbour lists
- Force calculation O(N2), 80 runtime
- Short range potentials allow decomposition into
cells - Only atoms in adjacent cells interact
- Each cell pair only once considered
- Run time O(N)
65Stillinger-Weber potentials
66Microconvergence
- Algorithm for energy relaxation
- Rapid cooling mechanism
67Integration of motion
68Three-body Tersoff potentials
attractive
repulsive
Complicated function of number and type of k atoms
69Explicit form of Tersoff-potential
70Fracture planes perpendicular to fivefold axes
71Long-range interactions(Coulomb- and polar)
By Greengard and Rokhlin Short range
interactions are calculated directly. For long
range interactions a multipole expansion is
performed on an octal tree
By Eastwood Short range interactions are
calculated directly. For long range interactions
Poisson equation is solved on a mesh
- Ewald sum method
- Reaction field method
- Particle-particle/particle-mesh (PPPM)
- Fast multipole method
72Dynamical structure factor Zn2Mg
Longitudinal phonons in the hexagonal plane
73Simulationskontrolle
- Gleichgewicht-Ensembles NVE, NVT, NPT
- Nichtgleichgewicht Scherfluss, Dehnung,
Plastische Verformung, Rissausbreitung mit
Stadion-Dämpfung - Steuerung einzelner Atome (Fixierung,
Sonderkräfte)
Datenausgabe
- Nur Atome mit besonderen Eigenschaften Energie,
Koordination, Auslenkung aus der
Referenzkonfiguration - Mittelwerte über kleine Raumbereiche
74Skalierung
- Hochleistungsnetzwerk mit niedriger Latenz nötig
- Tests auf IBM BlueGene/L Lineare Skalierung bis
zu tausenden von CPUs
75Elaboration of potentials
- Force Matching Method
- Select typical configurations
- Calculate wavefunctions, forces on ions
- Fit parametrized potentials (e.g. EAM)