Title: MR Diffusion Tensor Imaging, Tractography
1MR Diffusion Tensor Imaging, Tractography
- Richard Watts, D.Phil.
- Citigroup Biomedical Imaging Center
- Weill Medical College of Cornell University
- Box 234, 1300 York Avenue, New York, NY 10021
- Email riw2004_at_med.cornell.edu, Telephone 212
746-5781
2Acknowledgements
- Weill Medical College of Cornell University
- Department of Radiology
- Aziz Ulug, Linda Heier.
- Citigroup Biomedical Imaging Center
- Doug Ballon, Jon Dyke, Katherine Kolbert.
- Sackler Institute
- BJ Casey, Matt Davidson, Katie Thomas.
3(No Transcript)
4Outline
- Background
- Diffusion
- Restricted Diffusion and Anisotropy
- Methods
- Data Acquisition
- Display of Diffusion Tensor Data
- Fiber Tracking
- Problems and Limitations
- Examples
5Diffusion
6Diffusion Equation
r Displacement (mm) D Diffusion
constant (mm2/s) t Time (mm)
7Distance Scales
Question What distance do protons travel during
an EPI readout time?
Assume Diffusion constant 10-3 mm2/s Time
100 ms 0.1s
The root mean square (RMS) distance is 0.02mm
20µm
Such an experiment is sensitive to changes in
diffusion caused by structures on this scale or
smaller
8Diffusion Imaging of Leukemia
9Diffusion Imaging of Leukemia
10Spin Echo
11Spin Echo
12Spin Echo
13Data Acquisition Spin Echo
Echo
14Restricted Diffusion
15Diffusion Ellipsoid in White Matter
16Anisotropy
Isotropic Having the same properties in all
directions
Anisotropic Not isotropic having different
properties in different directions
Websters Dictionary
17Data Acquisition Spin Echo
Echo
Linear combination of gradients - measure
component of diffusion in any direction
18Diffusion Tensor Imaging
- Tensor is a mathematical model of the directional
anisotropy of diffusion - Represented by a 3x3 symmetric matrix ? 6 degrees
of freedom - Fit experimental data to the tensor model
- From the tensor, we can calculate
- Direction of greatest diffusion
- Degree of anisotropy
- Diffusion constant in any direction
19Calculated Quantities
Various definitions
T2-Weighted Image
Average Diffusion
Degree of Anisotropy
Diffusion along X
Diffusion along Y
Diffusion along Z
201. (Approximately) Isotropic Diffusion
How a blob of ink would spread out
212. Anisotropic Diffusion
How a blob of ink would spread out
22Vector Plot
In-plane
Through-plane
23Direction of Greatest Diffusion
X-component
Y-component
Z-component
Anisotropy
Color (Hue) Direction of highest
diffusion Brightness Degree of anisotropy
24Diffusion Tensor Colour Map
Left-Right
Anterior-Posterior
Superior-Inferior
25DTI Color Map
26Diffusion Tensor 3D Colour Map
Left-Right
Anterior-Posterior
Superior-Inferior
27How Many Measurements?
28Which Directions?
Isotropic resolution diffusion tensor imaging
with whole brain acquisition in a clinically
acceptable time D.K. Jones, S.C.R. Williams, D.
Gasston, M.A. Horsfield, A. Simmons, R.
Howard Human Brain Mapping 15, 216-230 (2002)
29Fiber Tracking Discrete Case
Direction of Greatest diffusion
30Fiber Tracking Discrete Case
Direction of Greatest diffusion
31Fiber Tracking Continuous Case
Direction of Greatest diffusion
Mori et al, 1999
32Fiber Tracking Where to Start
- Everywhere Seed points distributed evenly
throughout volume
33DTI Tractography
34Fiber Tracking Where to Start
- Within a plane All fibers within or crossing a
selected plane are tracked
35Fiber Tracking Corpus Callosum
36Fiber Tracking Corpus Callosum
37Fiber Tracking Where to Start
38Fiber Tracking - CST
39Human Neuroanatomy Carpenter Sutin 1981
Upper Extremity
Trunk
Lower Extremity
40Human Neuroanatomy Carpenter Sutin 1983
Upper Extremity
Trunk
Lower Extremity
41Fiber Tracking - CST
42Fiber Tracking - CST
43Combining DTI and fMRI
44fMRI Feet Movement
45fMRI Finger Tapping
46fMRI Tongue Movement
47Results fMRI Feet, Fingers, Tongue
48Images of Mind, Posner and Raichie, 1999
49Fiber Tracking - CST
Subject 1
Subject 2
Subject 3
Subject 4
50Crossing Fibers
51DTI Tracking below SLF
Tongue
Feet
Fingers
Upper
Trunk
Lower
52DTI Tractography Clinical Example
53DTI Tractography Clinical Example
54Limitations of DTI/Fiber Tracking
- Partial volume
- A single voxel may contain fibers running in
multiple directions average anisotropy measured - Tensor may not be a good representation
- Need to distinguish kissing and crossing
55More Pretty Pictures
- Isotropic resolution diffusion tensor imaging
with whole brain acquisition in a clinically
acceptable time - D.K. Jones, S.C.R. Williams, D. Gasston, M.A.
Horsfield, A. Simmons, R. Howard - Human Brain Mapping 15, 216-230 (2002)
56Conclusions, the Future
- DTI provides the only non-invasive method to
study organization white matter fibers. Previous
studies have been limited to animal models and
stroke patients - Current limitations on DTI and Fiber Tracking
- Partial volume effects
- SNR
- Acquisition time/physiological noise
- Advances
- High field, faster gradients, more efficient
coils, motion detection/correction, new pulse
sequences (eg. 3D, spiral) - Higher SNR can be traded for smaller voxels,
reducing partial volume effects - Beyond the tensor model HARD imaging, q-space
imaging - New tracking algorithms
57DTI Tracking below SLF
58DTI Tracking below SLF
59References
- High-resolution isotropic 3D diffusion tensor
imaging of the human brain. - X. Golay, H. Jiang, P.C.M. van Zijl, S. Mori
- Magn. Res. Med. 47, 837-843 (2002)
- White matter mapping using diffusion tensor MRI
- C.R. Tench, P.S. Morgan, M. Wilson, L.D.
Blumhardt - Magn. Res. Med. 47, 967-972 (2002)
- Three-dimensional tracking of axonal projections
in the brain by magnetic resonance imaging - S. Mori, B.J. Creain, V.P. Chacko, P.C.M. van
Zijl - Ann. Neurol. 45, 265-269 (1999)
- Diffusion tensor imaging Concepts and
applications - D. Le Bihan et al
- J. Magn. Res. Imaging 13, 534-546 (2001)
- In vivo three dimensional reconstruction of rat
brain axonal projections by diffusion tensor
imaging - R. Xue, P.C.M. van Zijl, B.J. Cain, M.
Solaiyappan, S.Mori - Magn. Res. Med. 42 1123-1127 (1999)
- A direct demonstration of both structure and
function in the visual system combining
diffusion tensor imaging with functional magnetic
resonance imaging - D.J. Werring, C.A. Clark, G.J.M. Parker, D.H.
Miller, A.J. Thompson, G.J. Barker - NeuroImage 9, 352-361 (1999)
- Orientation-independent diffusion imaging without
tensor diagonalization anisotropy definitions
based on the physical attributes of the diffusion
ellipsoid
60References
- Imaging cortical association tracts in the human
brain using diffusion-tensor based axonal
tracking - S. Mori et al
- Magn. Res. Med. 47, 215-223 (2002)
- Isotropic resolution diffusion tensor imaging
with whole brain acquisition in a clinically
acceptable time - D.K. Jones, S.C.R. Williams, D. Gasston, M.A.
Horsfield, A. Simmons, R. Howard - Human Brain Mapping 15, 216-230 (2002)
- Diffusion tensor imaging and axonal tracking in
the human brainstem - B. Stietjes et al
- NeuroImage 14 723-735 (2001)
- Tracking neuronal fiber pathways in the living
human brain - T.E. Conturo et al
- Proc. Natl. Acad. Sci. 96 10422-10427 (1999)
- The future for diffusion tensor imaging in
neuropsychiatry - K.H. Taber et al
- J. Neuropsychiatry Clin. Neurosci. 14 1-5 (2002)
- Tensorlines Advection-diffusion based
propogation through diffusion tensor fields - D. Weinstein, G. Kindlmann, E. Lundberg
61The Diffusion Tensor
where
Identical if
62How Many Measurements?
7 degrees of freedom S0, Dxx, Dyy, Dzz, Dxy,
Dxz, Dyz
Need at least 7 directions but more is
better! 30 slices x 32 directions 960 images
63Corresponding Tensor
mm2/s
64Eigenvalues and Eigenvectors of the Diffusion
Tensor
65Corresponding Tensor
mm2/s
66Eigenvalues and Eigenvectors of the Diffusion
Tensor