LU Decomposition - PowerPoint PPT Presentation

About This Presentation
Title:

LU Decomposition

Description:

Title: ENGINEERING 212 98A Author: Mechanical Engineering Last modified by: jzhang Created Date: 1/7/1998 6:48:58 PM Document presentation format – PowerPoint PPT presentation

Number of Views:623
Avg rating:3.0/5.0
Slides: 47
Provided by: Mechanical88
Category:

less

Transcript and Presenter's Notes

Title: LU Decomposition


1
Chapter 10
  • LU Decomposition

2
L and U Matrices
  • Lower Triangular Matrix
  • Upper Triangular Matrix

3
LU Decomposition
  • Another method for solving matrix equations
  • Idea behind the LU Decomposition - start with
  • We know (because we did it in Gauss Elimination)
    we can write

4
LU Decomposition
  • Assume there exists L
  • Such that
  • This implies

5
The Steps of LU Decomposition
6
LU Decomposition
  • LU Decomposition
  • Based on Gauss elimination
  • More efficient
  • Decomposition Methods (not unique)
  • Doolittle decomposition lii 1
  • Crout decomposition uii 1
    (omitted)
  • Cholesky decomposition (for symmetric
    matrices) uii lii

7
LU Decomposition
  • Three Basic Steps
  • (1) Factor (decompose) A into L and U
  • (2) given b, determine d from Ld b
  • (3) using Ux d and back-substitution,
    solve for x
  • Advantage Once we have L and U, we can use
    many different bs without repeating the
    decomposition process

8
LU Decomposition
  • LU decomposition / factorization
  • A x L U x b
  • Forward substitution
  • L d b
  • Back substitution
  • U x d
  • Forward substitutions are more efficient than
    elimination

9
Simple Truss
F45
4
5
F35
F14
F24
F25
1
3
H1
F23
F12
2
V1
V2
W
10
Exampe Forces in a Simple Truss
A depends on geometry only but b varies with
applied load
11
LU Factorization
  • Gauss elimination Axb
  • elimination steps need to be repeated for
    each different b
  • LU factorization / decomposition
  • A L U
  • does not involve the RHS b !!!

12
Doolittle LU Decomposition
  • Doolittle Algorithm
  • Get 1s on diagonal of L (lii 1)
  • Operate on rows and columns sequentially,
    narrowing down to single element
  • Identical to LU decomposition based on Gauss
    elimination (see pp238-239), but different
    approach

13
Doolittle LU Decomposition
14
Doolittle LU Decomposition
15
Doolittle LU Decomposition
16
Algorithm of Doolittle Decomposition
17
Forward Substitution
  • Once L is formed, we can use forward
    substitution instead of forward elimination for
    different bs

Very efficient for large matrices !
18
Back Substitution
Identical to Gauss elimination
19
Forward Substitution
Example
20
Back-Substitution
21
Forward and Back Substitutions
  • Forward-substitution
  • Back-substitution (identical to Gauss elimination)

Error in textbook (p. 165)
22
Forward and Back Substitutions
23
Example Forward and Back Substitutions
A1 0 2 3 -1 2 2 -3 0 1 1 4 6 2 2 4
b1 -1 2 1' L,U LU_factor(A) L
1.0000 0 0 0 -1.0000
1.0000 0 0 0 0.5000
1.0000 0 6.0000 1.0000 14.0000
1.0000 U 1 0 2 3 0
2 4 0 0 0 -1 4 0
0 0 -70 xLU_solve(L,U,b) x
-0.1857 0.2286 -0.1143 0.4714
(without pivoting)
MATLAB M-file LU_factor
Forward and back substitution
24
Pivoting in LU Decomposition
  • Still need pivoting in LU decomposition
  • Messes up order of L
  • What to do?
  • Need to pivot both L and a permutation matrix
    P
  • Initialize P as identity matrix and pivot when
    A is pivoted ? Also pivot L

25
LU Decomposition with Pivoting
  • Permutation matrix P
  • - permutation of identity matrix I
  • Permutation matrix performs bookkeeping
    associated with the row exchanges
  • Permuted matrix P A
  • LU factorization of the permuted matrix
  • P A L U
  • Solution
  • L U x P b

26
Permutation Matrix
  • Bookkeeping for row exchanges
  • Example P1 interchanges row 1 and 3
  • Multiple permutations P

27
LU Decomposition with Pivoting
Start with
No need to consider b in decomposition
28
Forward Elimination
Interchange rows 1 4
Gauss elimination of first column
Save fi1 in the first column of L
29
Forward Elimination
No interchange required
Gauss elimination of second column
Save fi2 in the second column of L
30
Forward Elimination
Interchange rows 3 4
Partial pivoting for L and P
31
Forward Elimination
Gauss elimination of third column
Save fi3 in third column of L
32
LU Decomposition with Pivoting
Gauss elimination with partial pivoting
33
LU Decomposition with Pivoting
Forward substitution
Back substitution
34
LU Decomposition with Pivoting
partial pivoting
35
LU Decomposition with Pivoting
A1 0 2 3 -1 2 2 -3 0 1 1 4 6 2 2 4
b1 -1 2 1' L,U,PLU_pivot(A) L
1.0000 0 0 0 -0.1667
1.0000 0 0 0.1667 -0.1429
1.0000 0 0 0.4286 0
1.0000 U 6.0000 2.0000 2.0000
4.0000 0 2.3333 2.3333 -2.3333
0 0 2.0000 2.0000 0
0 0 5.0000 T1 6 2
2 4 -1 2 2 -3 1 0
2 3 0 1 1 4 T2 6
2 2 4 -1 2 2 -3 1
0 2 3 0 1 1 4
T1 LU T2 PA
Verify T1 T2
36
LU Decomposition with Pivoting
x 0 0 -0.1143 0.4714 x
0 0.2286 -0.1143 0.4714 x
-0.1857 0.2286 -0.1143 0.4714 x
-0.1857 0.2286 -0.1143 0.4714
A1 0 2 3 -1 2 2 -3 0 1 1 4 6 2 2 4
b1 -1 2 1 L,U,PLU_pivot(A)
PbPb Pb 1 -1 1 2
xLU_Solve(L,U,Pb) d 1.0000 -0.8333
0 0 d 1.0000 -0.8333
0.7143 0 d 1.0000 -0.8333
0.7143 2.3571
LU Decomposition LUx Pb
Back Substitution
Forward Substitution
37
MATLABs Methods
  • LU factorization L,U lu (A)
  • -- returns L and U
  • L, U, P lu (A)
  • -- returns also the permutation matrix P
  • Cholesky factorization R chol(A)
  • -- A RR?
  • Determinant det (A)

38
MATLAB function lu
A1 0 2 3 -1 2 2 -3 0 1 1 4 6 2 2 4
b1 -1 2 1 L,Ulu(A) L 0.1667
-0.1429 1.0000 0 -0.1667 1.0000
0 0 0 0.4286 0
1.0000 1.0000 0 0
0 U 6.0000 2.0000 2.0000 4.0000
0 2.3333 2.3333 -2.3333 0
0 2.0000 2.0000 0 0
0 5.0000 LU ans 1 0
2 3 -1 2 2 -3 0 1
1 4 6 2 2 4
dL\b d 1.0000 -0.8333 0.7143
2.3571 xU\d x -0.1857 0.2286
-0.1143 0.4714
Forward and Back Substitutions
LU Decomposition without Pivoting
39
Cholesky LU Factorization
  • If A is symmetric and positive definite, it is
    convenient to use Cholesky decomposition.
  • A LLT UTU
  • Cholesky factorization can be used for either
    symmetric or non-symmetric matrices
  • No pivoting or scaling needed if A is symmetric
    and positive definite (all eigenvalues are
    positive)
  • If A is not positive definite, the procedure
    may encounter the square root of a negative number

40
Cholesky LU Factorization
  • For a general non-symmetric matrix
  • For symmetric and positive definite matrices

41
Cholesky LU Decomposition
42
Example Cholesky LU
43
Cholesky LU Factorization
  • A UTU U? U
  • Recurrence relations

44
Script file for Cholesky Decomposition
Symmetric Matrix L U? Compute only the upper
triangular elements
45
A9 -6 12 -3 -6 5 -9 2 12 -9 21 0 -3 2 0
6A 9 -6 12 -3 -6 5
-9 2 12 -9 21 0 -3 2
0 6 L,U Cholesky(A)L 3 0
0 0 -2 1 0 0 4 -1
2 0 -1 0 2 1 U 3
-2 4 -1 0 1 -1 0 0
0 2 2 0 0 0 1
Symmetric L U?
46
MATLAB Function chol
A9 -6 12 -3 -6 5 -9 2 12 -9 21 0 -3 2 0
6 b24 -19 51 11 U chol(A) U
3 -2 4 -1 0 1 -1 0
0 0 2 2 0 0 0 1
U'U ans 9 -6 12 -3 -6 5
-9 2 12 -9 21 0 -3 2
0 6 d U'\b d 8 -3 8
3 x U\d x 1 -2 1 3
Forward substitution
Back substitution
Write a Comment
User Comments (0)
About PowerShow.com