Title: Ab Initio Thermodynamics
1Ab Initio Thermodynamics
Leandro Liborio Computational Materials Science
Group MSSC2008 Ab Initio Modelling in Solid State
Chemistry
2Experimental Motivation
A great variety of surface reconstructions have
been observed, namely (2x1), c(4x2) 123,
(2x2), c(4x4), (4x4) 12, c(2x2),
(v5xv5),(v13xv13) 1. And several structural
models have been proposed. Under which
circumstances are any of these models
representing the observed surface reconstructions?
1 T.Kubo and H.Nozoye, Surf. Sci. 542 (2003)
177-191. 2 M.Castell, Surf. Sci. 505 (2002)
1-13. 3 N. Erdman et al, J. Am. Chem. Soc. 125
(2003) 10050-10056.
3General Idea and Considerations
- DFT provides the 0K Total energy E(RI).
- Classical thermodynamics studies real systems.
- The systems are assumed to be in equilibrium.
For the nanosystems considered here surfaces and
defective systems- this approximation is good
enough. - We want to calculate appropriate thermodynamic
potentials F, G, U, etc. - Ab initio thermodynamics might have a different
flavour depending on the first principles code
we are using CRYSTAL, CASTEP, SIESTA, VASP, etc.
Ab initio atomistic thermodynamics and
statistical mechanics of surface properties and
functions. K. Reuter, C. Stampfl and M.
Scheffler, in Handbook of Materials Modeling
Vol. 1, (Ed.) S. Yip, Springer (Berlin, 2005). (
http//www.fhi-berlin.mpg.de/th/paper.html)
4General Idea and Considerations
Helmholtz free energy FU-TS, independent
variables (T,V) Enthalpy HUPV, independent
variables (S,P) Gibbs Free Energy GU-TSPV,
independent variables (T,P)
If, for a given P and T, G(T,P) is a minimum,
then the system is said to be in a stable
equilibrium.
DFT allow for the calculation of the total energy
of a nanosystem
5Gibbs Free Energy Gas Phase
T gt 298 K and PO2lt 2 atm
6Gibbs Free Energy Gas Phase
NIST-JANAF Thermochemical Tables, Fourth edition
Journal of Physical and Chemical Reference Data,
Monograph 9 (1998)
7Gibbs Free Energy Gas Phase
Parameter Value
A 29,659x10-3 KJ/(mol.K)
B 6,1373x10-6 KJ/(mol.K2)
C -1,1865x10-9 KJ/(mol.K3)
D 0,09578x10-12 KJ/(mol.K4)
E 0,2197x103 KJ.K/mol
F -9,8614 KJ/mol
G 237,948x10-3 KJ/(mol.K)
8Gibbs Free Energy Gas Phase
- Experimental errors
- Neglect of the thermal contributions to the
Gibbs free energies of solids. - DFT exchange and correlation approximations
- Presence of pseudopotentials (depends on the code)
Ab initio atomistic thermodynamics of the (001)
surface of SrTiO3. L. Liborio, PhD Thesis.
(http//www.ch.ic.ac.uk/harrison/Group/Liborio/Doc
s/liborio-phdthesis.pdf)
9Gibbs Free Energy Gas Phase
CASTEP, SIESTA GGA and LDA functionals.
Method 2 Calculating the oxygen molecules
properties from ab initio
Exp. PW-GGA (4) CRYSTAL (B3LYP)
Binding energy eV 2.56 3.6 2.53
Bond length ang 1.21 1.22 1.23
(4) W. Li et al., PRB, Vol. 65, pp.
075407-075419, 2002.
10Gibbs Free Energy Gas Phase
11Gibbs Free Energy Gas Phase
Method 1 Using experimental Gibbs formation
energies
Method 2 Calculating the oxygen molecules
properties from ab initio
12Gibbs Free Energy Solid Phase
Helmholtz vibrational energy
E(0K) Total ab initio energy. Sconfig
Configurational entropy. pV Related with the
systems volume, (0.005 J/m2 in the SrTiO3
surfaces.) Fvib(T) Helmholtz vibrational
energy.
The quantities of interest to us, namely surface
energies and defect formation energies, depend on
differences of Gibbs free energies.
13Gibbs Free Energy Solid Phase
- E(0K) total energy of the system calculated ab
initio. This is the dominant term and the
difficulty in calculating it depends essentially
on the type of system and the chosen ab initio
code.
- Sconfig0 The system configuration is known .
14Gibbs Free Energy Solid Phase
(1) K. Refson et al, Phys. Rev. B, 73, 155114,
(2006). (2) J. G. Taylor et al, Phys. Rev. B, 3,
3457, (1971). (3) N. Ashcroft and D. Mermin,
Solid State Physics, (1976).
15Gibbs Free Energy Solid Phase
(1) K. Refson et al, Phys. Rev. B, 73, 155114,
(2006).
16Gibbs Free Energy Solid Phase
17Gibbs Free Energy Solid Phase
Vibrational Helmholtz free energies contribution
Compound Vib. Cont. J/m2
PdO (1) 0.2
RuO2 (2) 0.15
aAl2O3 (3) 0.18
NiO100 (4) 0.2
SrTiO3001 0.2
The quantities of interest to us, namely surface
energies and defect formation energies, depend on
differences of Gibbs free energies.
(1) J. Rogal et al, PRB, 69, 075421, (2004). (2)
K. Reuter et al, PRB, 68, 045407, (2003). (3) A.
Marmier et al, J. Eur. Cer. Soc, 23, 2729,
(2003). (4) M.B. Taylor et al, PRB, 59, 6742,
(1999).
18Gibbs Free Energy Summary
Solid phases
Gas phases
19Magneli Phases
Figure 1a
Figure 1b
TnO2n-1 composition, .Oxygen
defects in 121 planes. Ti4O7 at Tlt154K
insulator with 0.29eV band gap(1). T4O7
Metal-insulator transition at 154K, with sharp
decrease of the magnetic susceptibility.
20Magneli Phases T4O7 crystalline structure
Figure 3c
Figure 3b
Figure 3a
Figure 3e
Figure 3d
Metal nets in antiphase. (121)r Cristallographic
shear plane.
21Technical details of the calculations
CASTEP
CRYSTAL
Local density functional LDA Ultrasoft
pseudopotentials replacing core electrons Plane
waves code Supercell approach
Hybrid density functional B3LYP,
GGA Exchange
GGA Correlation
20 Exact
Exchange All electron code. No
pseudopotentials Local basis functions atom
centred Gaussian type functions. Ti 27 atomic
orbitals, O 18 atomic orbitals Supercell
approach
- SCARF cluster. Facility provided by STFCs
e-Science facility. - HPCx, UKs national high-performance computing
service.
22 Defect Formation Energies
Figure 5a
23Formation Energies Oxygen chemical potential
CASTEP
CRYSTAL
24 Results for the Magneli phases
Isolated defects
Figure 8a
Magneli phases
Figure 8b
25 Results for the Magneli phases
Equilibrium point Ti4O7-TiO9
Equilibrium point Ti3O5-Ti4O7
26 Results for the Magneli phases
Log(pO2) T(K)
Exper. -15 1538.5
CASTEP -15 1515.2
CRYSTAL -15 1379.3
P. Waldner and G. Eriksson, Calphad Vol. 23, No.
2, pp. 189-218, 1999.
27Conclusions
- Ab initio thermodynamics uses DFT to estimate
Gibbs free energies. - Ab inito thermodynamics allows general
thermodynamic reasoning with nanosystems and it
can be implemented using different ab initio
codes. - It can be used to simulate systems under real
environmental conditions. - For the Magneli phases, ab initio thermodynamics
reproduce the experimental observations
reasonably well. - The equilibrium experimental (P,T) diagrams were
reproduced from first principles. - At a high concentration of oxygen defects and low
oxygen chemical potential, oxygen defects prefer
to form Magneli phases. - But, at low concentration of oxygen defects and
low oxygen chemical potential, titanium
interstitials proved to be the stable point
defects.
28Acknowledgements
Prof. Nic Harrison Dr. Giuseppe Mallia Dr.
Barbara Montanari Dr. Keith Refson