KARBOHIDRAT * Reaksi monosakarida * Ikatan glikosida * Fungsi karbohidrat - PowerPoint PPT Presentation

1 / 44
About This Presentation
Title:

KARBOHIDRAT * Reaksi monosakarida * Ikatan glikosida * Fungsi karbohidrat

Description:

KARBOHIDRAT * Reaksi monosakarida * Ikatan glikosida * Fungsi karbohidrat Prof. Dr. Ir. Chanif Mahdi, MS. For example, in cartilage multiple copies of the aggrecan ... – PowerPoint PPT presentation

Number of Views:4929
Avg rating:3.0/5.0
Slides: 45
Provided by: irfandpr
Category:

less

Transcript and Presenter's Notes

Title: KARBOHIDRAT * Reaksi monosakarida * Ikatan glikosida * Fungsi karbohidrat


1
KARBOHIDRAT Reaksi monosakarida Ikatan
glikosida Fungsi karbohidrat
  • Prof. Dr. Ir. Chanif Mahdi, MS.

2
KARBOHIDRAT
  • Karbohidrat adalah golongan senyawa organik,
    polihidroksi aldehid atau polihidroksi keton,
    atau senyawa lainnya apabila dihidrolisa dapat
    menghasilkan kedua senyawa tersebut. Karbohidrat
    berasal dari kata karbon (C) dan hidrat (H2O).
    Karena molekul karbohidrat selalu mempunyai
    perbandingan antara hidrogen dan oksigen 2 1
    . Oleh karena itu rumus umum karbohidrat adalah
    C12 (H2O)11, tetapi tidak semua senyawa yang
    mempunyai perbandingan

3
  • H O 2 1 adalah senyawa karbohidrat.
    Contoh asam asetat mempunyai rumus C2H4O2 bukan
    termasuk karbohidrat.
  • Penggolongan Senyawa Karbohidrat
  • Berdasarkan susunan molekulnya, karbohidrat
    dapat digolongkan menjadi tiga golongan sebagai
    berikut
  • 1. Monosakarida
  • 2. Disakarida / oligosakarida
  • 3. Polisakarida

4
Monosakarida
  • Adalah golongan senyawa karbohidrat, yang paling
    sederhana, yang tidak dapat dipecah lagi menjadi
    gula yang lebih sederhana. Berdasarkan gugus
    fungsionilnya, monosakarida dapat digolongkan
    menjadi dua golongan, masing- masing adalah
    aldose dan ketose.
  • Berdasarkan jumlah atom C nya, monosakarida
    dapat digolongkan menjadi empat golongan

5
  • masing- masing adalah Triose (mengandung 3
    atom C), Tetrose (mengandung 4 atom C), Pentose
    (mengandung 5 atom C), dan heksose (mengandung 6
    atom C.adapun secara skematis penggolongan
    senyawa karbohidrat seperti gambar skema berikut

6
(No Transcript)
7
Monosakarida
  • Memiliki atom karbon 3 sampai 6
  • Setiap atom karbon memiliki gugus hidroksil,
    keton atau aldehida.
  • Setiap molekul monosakarida memiliki 1 gugus
    keton atau 1 gugus aldehida
  • Gugus aldehida selalu berada di atom C pertama
  • Gugus keton selalu berada di atom C kedua

8
Monosakarida
  • Aldosa (mis glukosa) memiliki gugus aldehida
    pada salah satu ujungnya.

Ketosas (mis fruktosa) biasanya memiliki gugus
keto pada atom C2.
9
Notasi D vs L
  • Notasi D L dilakukan karena adanya atom C
    dengan konfigurasi asimetris seperti pada
    gliseraldehida.

Penampilan dalam bentuk gambar bagian bawah
disebut Proyeksi Fischer.
10
Penamaan Gula
  • Untuk gula dengan atom C asimetrik lebih dari 1,
    notasi D atau L ditentukan oleh atom C asimetrik
    terjauh dari gugus aldehida atau keto.
  • Gula yang ditemui di alam adalah dalam bentuk
    isomer D.

11
  • Gula dalam bentuk D merupakan bayangan cermin
    dari gula dalam bentuk L.
  • Kedua gula tersebut memiliki nama yang sama,
    misalnya D-glukosa L-glukosa.

Stereoisomers lainnya memiliki names yang unik,
misalnya glukosa, manosa, galaktosa, dll.
Jumlah stereoisomer adalah 2n, dengan n adalah
jumlah pusat asimetrik. Aldosa dengan 6-C
memiliki 4 pusat asimetrik, oleh karenanya
memiliki 16 stereoisomer (8 gula berbentuk D dan
8 gula berbentuk L).
12
Pembentukan hemiasetal hemiketal
  • Aldehida dapat bereaksi dengan alkohol membentuk
    hemiasetal.
  • Keton dapat bereaksi dengan alkohol membentuk
    hemiketal.

13
  • Pentosa dan heksosa dapat membentuk struktur
    siklik melalui reaksi gugus keton atau aldehida
    dengan gugus OH dari atom C asimetrik terjauh.
  • Glukosa membentuk hemiasetal intra-molekular
    sebagai hasil reaksi aldehida dari C1 OH dari
    atom C5, dinamakan cincin piranosa.

Penampilan dalam bentuk gula siklik disebut
proyeksi Haworth.
14
  • Fruktosa dapat membentuk
  • Cincin piranosa, melalui reaksi antara gugus keto
    atom C2 dengan OH dari C6.
  • Cincin furanosa, melalui reaksi antara gugus keto
    atom C2 dengan OH dari C5.

15
  • Pembentukan cincin siklik glukosa menghasilkan
    pusat asimetrik baru pada atom C1. Kedua
    stereoisomer disebut anomer, a b.
  • Proyeksi Haworth menunjukkan bentuk cincin dari
    gula dengan perbedaan pada posisi OH di C1
    anomerik
  • a (OH di bawah struktur cincin)
  • b (OH di atas struktur cincin).

16
  • Karena sifat ikatan karbon yang berbentuk
    tetrahedral, gula piranosa membentuk konfigurasi
    kursi" atau perahu", tergantung dari gulanya.
  • Penggambaran konfigurasi kursi dari glukopiranosa
    di atas lebih tepat dibandingkan dengan proyeksi
    Haworth.

17
Turunan gula
  • Gula alkohol tidak memiliki gugus aldehida atau
    ketone misalnya ribitol.
  • Gula asam gugus aldehida pada atom C1, atau OH
    pada atom C6, dioksidasi membentuk asam
    karboksilat misalnya asam glukonat, asam
    glukuronat.

18
Oksidasi gula aldehida
19
Oksidasi gula aldehida
  • Gula yang dapat dioksidasi adalah senyawa
    pereduksi. Gula yang demikian disebut sebagai
    gula pereduksi.
  • Senyawa yang sering digunakan sebagai
    pengoksidasi adalah ion Cu2, yang berwarna biru
    cerah, yang akan tereduksi menjadi ion Cu, yang
    berwarna merah kusam. Hal ini menjadi dasar bagi
    pengujian Benedict yang digunakan untuk
    menentukan keberadaan glukosa dalam urin, suatu
    pengujian bagi diagnosa diabetes.

20
Oksidasi gula aldehida
panas alk . pH
  • Glukosa Cu

Gluconic acid Cu2O (Cu2O is insol ppt)
glukosa oksidase
Glukosa O2
Asam glukonat H2O2 (H2O2 nya diukur)
heksokinase
Glukosa ATP
Glukosa-6-P ADP (G-6-Pnya diukur)
21
Turunan gula

C
H
O
H
C
H
O
H
2
2
O
O
H
H
H
H
H
H
H
H
O
H
O
H
O
H
O
H
O
H
O
H
O
N
H
H
N
H
C
C
H
3
2
H
a
a
-
-
glukosamina
-
-
N
-
asetilglukosamina
D
D
  • Gula amino - gugus amino menggantikan gugus
    hidroksil. Sebagai contoh glukosamina.
  • Gugus amino dapat mengalami asetilasi, seperti
    pada N-asetilglukosamina.

22
Ikatan Glikosida
  • Gugus hidroksil anomerik dan gugus hidroksil gula
    atau senyawa yang lain dapat membentuk ikatan
    yang disebut ikatan glikosida dengan membebaskan
    air
  • R-OH HO-R' ? R-O-R' H2O
  • Misalnya methanol bereaksi dengan gugus OH
    anomerik dari glukosa membentuk metil glukosida
    (metil-glukopiranosa).

23
Disaccharides Maltose, a cleavage product of
starch (e.g., amylose), is a disaccharide with an
a(1 4) glycosidic link between C1 - C4 OH of 2
glucoses. It is the a anomer (C1 O points down).
  • Cellobiose, a product of cellulose breakdown, is
    the otherwise equivalent b anomer (O on C1 points
    up).
  • The b(1 4) glycosidic linkage is represented as
    a zig-zag, but one glucose is actually flipped
    over relative to the other.

24
  • Other disaccharides include
  • Sucrose, common table sugar, has a glycosidic
    bond linking the anomeric hydroxyls of glucose
    fructose.
  • Because the configuration at the anomeric C of
    glucose is a (O points down from ring), the
    linkage is a(1?2).
  • The full name of sucrose is
    a-D-glucopyranosyl-(1?2)-b-D-fructopyranose.)
  • Lactose, milk sugar, is composed of galactose
    glucose, with b(1?4) linkage from the anomeric OH
    of galactose. Its full name is b-D-galactopyranosy
    l-(1? 4)-a-D-glucopyranose

25
Polysaccharides
  • Plants store glucose as amylose or amylopectin,
    glucose polymers collectively called starch.
    Glucose storage in polymeric form minimizes
    osmotic effects.
  • Amylose is a glucose polymer with a(1?4)
    linkages. It adopts a helical conformation.
  • The end of the polysaccharide with an anomeric C1
    not involved in a glycosidic bond is called the
    reducing end.

26
  • Amylopectin is a glucose polymer with mainly
    a(1?4) linkages, but it also has branches formed
    by a(1?6) linkages. Branches are generally longer
    than shown above.
  • The branches produce a compact structure
    provide multiple chain ends at which enzymatic
    cleavage can occur.

27
  • Glycogen, the glucose storage polymer in animals,
    is similar in structure to amylopectin. But
    glycogen has more a(1?6) branches.
  • The highly branched structure permits rapid
    release of glucose from glycogen stores, e.g., in
    muscle during exercise. The ability to rapidly
    mobilize glucose is more essential to animals
    than to plants.

28
  • Cellulose, a major constituent of plant cell
    walls, consists of long linear chains of glucose
    with b(14) linkages.
  • Every other glucose is flipped over, due to the b
    linkages.
  • This promotes intra-chain and inter-chain H-bonds
    and

van der Waals interactions, that cause cellulose
chains to be straight rigid, and pack with a
crystalline arrangement in thick bundles called
microfibrils. Botany online website
29
  • Multisubunit Cellulose Synthase complexes in the
    plasma membrane spin out from the cell surface
    microfibrils consisting of 36 parallel,
    interacting cellulose chains.
  • These microfibrils are very strong.
  • The role of cellulose is to impart strength and
    rigidity to plant cell walls, which can withstand
    high hydrostatic pressure gradients. Osmotic
    swelling is prevented.
  • Explore and compare structures of amylose
    cellulose using Chime.

30
Tabel Beberapa Uji Karbohidrat
  • --------------------------------------------------
    ------------------------------------------
  • Jenis KH Molisch Fehling/Benedict
    Fermentasi
  • --------------------------------------------------
    ------------------------------------------
  • Glukose
  • Galaktosa
    -
  • Fruktosa
    -
  • Laktosa
    -
  • Sukrose
    -
  • Maltosa
  • Pati
    - -
  • Glikogen
    -

31
  • Glycosaminoglycans (mucopolysaccharides) are
    polymers of repeating disaccharides.
  • Within the disaccharides, the sugars tend to be
    modified, with acidic groups, amino groups,
    sulfated hydroxyl and amino groups, etc.
  • Glycosaminoglycans tend to be negatively charged,
    because of the prevalence of acidic groups.

32
  • Hyaluronate is a glycosaminoglycan with a
    repeating disaccharide consisting of 2 glucose
    derivatives, glucuronate (glucuronic acid)
    N-acetyl-glucosamine.
  • The glycosidic linkages are b(13) b(14).

33
  • Proteoglycans are glycosaminoglycans that are
    covalently linked to specific core proteins. 
  • Some proteoglycans of the extracellular matrix in
    turn link non-covalently to hyaluronate via
    protein domains called link modules.

34
  • For example, in cartilage multiple copies of the
    aggrecan proteoglycan bind to an extended
    hyaluronate backbone to form a large complex.
  • Versican, another proteoglycan that binds to
    hyaluronate, is in the extracellular matrix of
    loose connective tissues.
  • See web sites on aggrecan and aggrecan plus
    versican.

35
  • Heparan sulfate is initially synthesized on a
    membrane-embedded core protein as a polymer of
    alternating N-acetylglucosamine and
    glucuronate residues.
  • Later, in segments of the polymer, glucuronate
    residues may be converted to the sulfated sugar
    iduronic acid, while N-acetylglucosamine residues
    may be deacetylated and/or sulfated.

36
  • Heparin, a soluble glycosaminoglycan found in
    granules of mast cells, has a structure similar
    to that of heparan sulfates, but is more highly
    sulfated.
  • When released into the blood, it inhibits clot
    formation by interacting with the protein
    antithrombin.
  • Heparin has an extended helical conformation.

C  O  N  S
Charge repulsion by the many negatively charged
groups may contribute to this conformation.
Heparin shown has 10 residues, alternating IDS
(iduronate-2-sulfate) SGN (N-sulfo-glucosamine-6
-sulfate).
37
  • Some cell surface heparan sulfate
    glycosaminoglycans remain covalently linked to
    core proteins embedded in the plasma membrane.
  • Proteins involved in signaling adhesion at the
    cell surface recognize and bind segments of
    heparan sulfate chains having particular patterns
    of sulfation.

38
Oligosaccharides that are covalently attached to
proteins or to membrane lipids may be linear or
branched chains.
  • O-linked oligosaccharide chains of glycoproteins
    vary in complexity.
  • They link to a protein via a glycosidic bond
    between a sugar residue a serine or threonine
    OH. 
  • O-linked oligosaccharides have roles in
    recognition, interaction, and enzyme regulation.

39
N-acetylglucosamine (GlcNAc) is a common O-linked
glycosylation of protein serine or threonine
residues. Many cellular proteins, including
enzymes transcription factors, are regulated by
reversible GlcNAc attachment. Often attachment
of GlcNAc to a protein OH alternates with
phosphorylation, with these 2 modifications
having opposite regulatory effects (stimulation
or inhibition).
40
  • N-linked oligosaccharides of glycoproteins tend
    to be complex and branched. First
    N-acetylglucosamine is linked to a protein via
    the side-chain N of an asparagine residue in a
    particular 3-amino acid sequence.

41
  • Additional monosaccharides are added, and the
    N-linked oligosaccharide chain is modified by
    removal and addition of residues, to yield a
    characteristic branched structure.

42
  • Many proteins secreted by cells have attached
    N-linked oligosaccharide chains.
  • Genetic diseases have been attributed to
    deficiency of particular enzymes involved in
    synthesizing or modifying oligosaccharide chains
    of these glycoproteins.
  • Such diseases, and gene knockout studies in mice,
    have been used to define pathways of modification
    of oligosaccharide chains of glycoproteins and
    glycolipids.
  • Carbohydrate chains of plasma membrane
    glycoproteins and glycolipids usually face the
    outside of the cell.
  • They have roles in cell-cell interaction and
    signaling, and in forming a protective layer on
    the surface of some cells.

43
  • Lectins are glycoproteins that recognize and bind
    to specific oligosaccharides. A few examples
  • Concanavalin A and wheat germ agglutinin are
    plant lectins that have been useful research
    tools. 
  • Mannan-binding lectin (MBL) is a glycoprotein
    found in blood plasma.
  • It associates with cell surface carbohydrates
    of disease-causing microorganisms, promoting
    phagocytosis of these organisms as part of the
    immune response.

44
Selectins are integral proteins of mammalian cell
plasma membranes with roles in cell-cell
recognition binding. A lectin-like domain is
at the end of an extracellular segment that
extends out from the cell surface.
  • A cleavage site just outside the transmembrane
    a-helix provides a mechanism for regulated
    release of some lectins from the cell surface.
  • A cytosolic domain participates in regulated
    interaction with the actin cytoskeleton.
Write a Comment
User Comments (0)
About PowerShow.com