Bose-Einstein Statistics - PowerPoint PPT Presentation

1 / 9
About This Presentation
Title:

Bose-Einstein Statistics

Description:

Bose-Einstein Statistics Applies to a weakly-interacting gas of indistinguishable Bosons with: Fixed N = ini Fixed U = iEini No Pauli Exclusion Principle: ni 0 ... – PowerPoint PPT presentation

Number of Views:4568
Avg rating:3.0/5.0
Slides: 10
Provided by: RogerW86
Category:

less

Transcript and Presenter's Notes

Title: Bose-Einstein Statistics


1
Bose-Einstein Statistics
  • Applies to a weakly-interacting gas of
    indistinguishable Bosons with
  • Fixed N ?ini
  • Fixed U ?iEini
  • No Pauli Exclusion Principle ni ? 0, unlimited
  • Each group i has
  • gi states, gi-1 possible subgroups, ni to be
    shared between them
  • Number of combination to do this is
  • So number of microstates in distribution ni
    states

2
Bose-Einstein Statistics
  • Classical limit
  • Bose-Einstein
  • Large numbers gi, ni

ni factors
3
Bose-Einstein Distribution
  • We use the same technique as for Boltzmann,
    maximize ln t(ni) d ln t (ni) 0
  • Add to this the constraints
  • dN 0 ? ?idni 0 (ii)?
  • dU 0 ? ?i Ei dni 0 (iii)?
  • Once again, add the (i)?(ii)?(iii)
    (Lagrange)?
  • Thermodymanics gives ?-1/kT

4
Open and Closed Systems
  • ? given by N?igiF(Ei) for a closed system of
    phoney bosons (e.g. ground state He4 atom
    (2p2n2e, each in up-down spin combinations)?
  • ? -?/kT
  • Elementary bosons (not made up of fermions) do
    not conserve N examples are photons and phonons
  • These correspond to an open system no fixed n
  • ? no ??? no ?

5
Black Body Radiation
  • Spectral Energy density is the energy in a photon
    gas between E and EdE U(E) dE
  • Energy in photon gas for photons with frequencies
    between ? and ? d?? u(?) d?? h? F(E) g(E) dE

  • h? F(?) g(?) d?
  • (from week 1homework) h? F(?) V 8??2/c3
    d?

Planck Radiation Formula
6
Black Body Radiation
  • In terms of wavelength (?? c/?)?

u(?)?
u(?)?
?
?
h?./kT3
hc./?kT5
7
Black Body Radiation
  • ?max ? hc/5kT
  • T Tsun 6000K ?max ? 480 nm (yellow light)?
  • T Troom 300K ?max ? 10 ?m (Infra-red)?
  • T Tuniverse 3K ?max ? 1 mm (microwave
    background)
  • Total Energy of Photon Gas

8
Radiation Pressure
  • For massive particles
  • P (2/3) (U/V) (because E k2 and
    and k V1/3)?
  • For massless particles E K
  • P (1/3) (U/V)?

9
Classical Limit
  • In Maxwell-Boltzmann limit, F(E)ltlt1,
  • so exp( (E-?)/(kBT) ) gtgt 1
  • So FMB(E) exp( -(E-?)/(kBT) )
  • exp( ?/(kBT) ) exp(
    -(E/(kBT) )?
  • (N/Z) exp( -(E/(kBT)
    )?
  • So N/Z exp( ?/(kBT) )
  • So chemical potential ? kBT ln(N/Z)?
Write a Comment
User Comments (0)
About PowerShow.com