Earth resource satellites operating in the optical spectrum - PowerPoint PPT Presentation

1 / 61
About This Presentation
Title:

Earth resource satellites operating in the optical spectrum

Description:

Chapter 6 Earth resource satellites operating in the optical spectrum Introduction to Remote Sensing Instructor: Dr. Cheng-Chien Liu Department of Earth Sciences – PowerPoint PPT presentation

Number of Views:1235
Avg rating:3.0/5.0
Slides: 62
Provided by: ChengCh9
Category:

less

Transcript and Presenter's Notes

Title: Earth resource satellites operating in the optical spectrum


1
Chapter 6
  • Earth resource satellites operating in the
    optical spectrum
  • Introduction to Remote Sensing
  • Instructor Dr. Cheng-Chien Liu
  • Department of Earth Sciences
  • National Cheng-Kung University
  • Last updated 28 May 2003

2
6.1 Introduction
  • Remote sensing space exploration (RSSE) ?
    interest and application over a wider range of
    disciplines
  • Current application
  • New technology ? new or improved satellite/sensor
    ? new application
  • The most important outcome of RSSE
  • ? observing earth ? earth system

3
6.1 Introduction (cont.)
  • This chapter ? optical range ? 0.3 m m14 m m
  • Landsat
  • Spot
  • NOAA series

4
6.2 Early history of space imaging
  • Ludwig Bahrmann (1891) New or improved apparatus
    for obtaining Birds eye photographic views
  • Alfred Maul (1907) gyrostabilization
  • Alfred Maul (1912) 41kg, 200mm x 250 mm, 790m
  • 19461950 V2 rockets
  • 1960 TIROS-1, early weather satellite
  • Not just look at but also look through

5
6.2 Early history of space imaging (cont.)
  • 1960s Mercury, Gemini, Apollo
  • Alan Shepard, 1961, 70 mm, 150 photos
  • John Glenn, 1962, 35 mm, 48 photos.
  • Later Mercury missions 70 mm, 80 mm
  • Gemini GT-4 mission formal experiment directed
    at geology
  • Tectonics, volcanology, geomophology.
  • 12,400 1100 photos
  • Apollo 9 4 camera array, electrically triggered.
    140 sets of imagery

6
6.2 Early history of space imaging (cont.)
  • Skylab 1973
  • Earth Resources Experiment Package (EREP)
  • 6-camera multi-spectral array
  • A long focal length earth terrain camera
  • A 13-channel multispectral scanner
  • A pointable spectroradiometer
  • Two microwave systems.
  • 35,000 images
  • U.S.-USSR Apollo-Soyuz Test Project (ASTP)

7
6.3 Landsat satellite program overview
  • Earth Resources Technology Satellite (ERTS) 1967
  • ERTS-1, 19721978
  • Nimbus weather satellite ? modified
  • Experimental system ? test feasibility
  • Open skies principle
  • Landsat-2, 1975 (ERTS-2)

8
6.3 Landsat satellite program overview (cont.)
  • Table 6.1 Characteristics of Landsat 16
  • Return Beam Vidicon (RBV) camera systems
  • Multispectral Scanner system (MSS)
  • Thematic Mapper (TM)
  • Enhanced Thematic Mapper (ETM)
  • Table 6.2 Sensors used on Landsat 16 missions

9
6.4 Orbit characteristic of Landsat-1, -2, and 3
  • Fig 6.1 Landsat 1, -2, and 3 observatory
    configuration
  • 3m x 1.5m, 4m width of solar panels, 815 kg, 900
    km
  • Inclination 90
  • To 103 min/orbit
  • Fig 6.2 Typical Landsat-1, -2 and 3 daily orbit
    pattern
  • Successive orbits are about 2760km
  • Swath 185km
  • Orbital procession ? 18 days for coverage
    repetition ?20 times of global coverage per year

10
6.4 Orbit characteristic of Landsat-1, -2, and 3
(cont.)
  • Sun-synchronous orbit
  • 942 am ? early morning skies are generally
    clearer than later in the day
  • Pros repeatable sun illumination conditions on
    the same day in every year
  • Cons variable sun illumination conditions with
    different locations and seasons ? variations in
    atmospheric conditions

11
6.5 Sensors onboard Landsat-1, -2 and 3
  • 3-Channel RBV
  • 185km x 185 km
  • Ground resolution 80m
  • Spectral bands 1 0.475 mm0.575 mm (green)
  • 20.580 mm0.680
    mm (red)
  • 3 0.690 mm0.830 mm (NIR)
  • Expose ? photosensitive surface ? scan ? video
    signal
  • Pros
  • Greater cartographic fidelity
  • Reseau grid ? geometric correction in the
    recording process

12
6.5 Sensors onboard Landsat-1, -2 and 3 (cont.)
  • 3-Channel RBV (cont.)
  • Landsat-1 malfunction ? only 1690 scenes
  • Landsat-2 ? only for engineering evaluation ?
    only occasionally RBV imagery was obtained.
  • Landsat-3
  • Single broad band (0.5050.75 u mm)
  • 2.6 times of resolution improved 30m ? double f
  • Two-camera side-by-side configuration with
    side-lap and end-lap. (Fig 6.4)
  • Fig 6.5 Landsat-3 RBV image

13
6.5 Sensors onboard Landsat-1, -2 and 3 (cont.)
  • 4 Channel MSS
  • 185km x 185km
  • Ground resolution 79m
  • Spectral band
  • Band 4 0.5 mm 0.6 mm (green)
  • Band 5 0.6 mm 0.7 mm (red)
  • Band 6 0.7 mm 0.8 mm (NIR)
  • Band 7 0.8 mm 0.9 mm (NIR)
  • Band 8 10.412.6 um ? Landsat-3, failed
  • Band 47 ? band 14 in Landsat-4, -5
  • Fig 6.6 Comparison of spectral bands

14
6.5 Sensors onboard Landsat-1, -2 and 3 (cont.)
  • 4 Channel MSS (cont.)
  • Fig 6.7 Landsat MSS operating configuration
  • Small TFOV ? use an oscillating scan mirror
  • A-to-D converter (6 bits)
  • Pixel width 56m x 79m ? set by the pixel
    sampling rate (Fig 6.8)
  • Each Landsat MSS scene ? 185km x 185km
  • 2340 scan lines, 3240 pixels per line, 4 bands
  • Enormous data
  • Fig 6.9 Full-frame, band 5, Landsat MSS scene
  • Parallelogram ? earths rotation
  • 15 steps
  • Tick marks ? Lat. Long.
  • Annotation block
  • Color composite band 4 (b), band 5 (g), band
    7(r)(Fig 6.6)

15
6.5 Sensors onboard Landsat-1, -2 and 3 (cont.)
  • Data distribution
  • Experiment ? transitional ? operational
  • NASA NOAA NASA
  • USGS EOSAT USGS
  • Landsat-1,-2,-3 Landsat-4,-5,-6 Landsat-7
  • Department of Interior Department of Commerce
    Department of Defense
  • Data receiving station
  • Data reprocessing
  • Data catalogue

16
6.6 Landsat MSS image interpretation
  • Applications
  • agriculture, botany cartography, civil
    engineering, environmental monitoring, forestry,
    geography, geology, geophysics, land resources
    analysis, land use planning, oceanography, water
    resource analysis
  • Comparison of Landsat airborne image
  • Table 6.4
  • Resolution
  • Coverage
  • Complementary not replacement
  • 2-D, non-stereo mode

17
6.6 Landsat MSS image interpretation (cont.)
  • Characteristics of MSS image
  • Effective resolution ? 79m, (30m for Landsat-3)
    but linear feature with sharp contrast can be
    seen
  • 1-D displacement relief (in E-W direction)
  • Limited area can be viewed in stereo ? study
    topographic
  • High altitude low TFOV ? little RD ? planimeter
    map
  • E.g. World Bank, USGS. DMA, petroleum company

18
6.6 Landsat MSS image interpretation (cont.)
  • Characteristics of MSS image (cont.)
  • Band 5 (red) ? better atmospheric penetration ?
    detecting cultural features
  • Band 4 (green) ? deep, clear water penetration
  • Band 6, 7 ? lineating water bodies (dark)
  • The largest single use of Landsat MSS data ?
    geologic studies ? band 5.7

19
6.6 Landsat MSS image interpretation (cont.)
  • Fig 6.10 four Landsat MSS bands
  • Extent of the urban area (B4, 5, light)
  • Major road (B4, 5 light, not B6, B7 dark)
  • Airport
  • Asphalt-surfaced runways
  • Four major lakes and connected river (B6, 7 dark)
  • mid-July ? algae ? green ? B4 similar to the
    surrounding agricultural land
  • Agricultural field. (B5, 6, 7)
  • Forest (B4, 5 dark) ? winter images are preferred

20
6.6 Landsat MSS image interpretation (cont.)
  • Fig 6.11 Landsat MSS band 5
  • December image
  • 20 cm snow covered ? all water bodies are frozen
  • Snow covered upland and valley floors ? light
    tone
  • Steep, tree-covered valley sides ? dark tone
  • September image
  • Identify forest area

21
6.6 Landsat MSS image interpretation (cont.)
  • A hit-or-miss proposition
  • Some events leave lingering trace
  • Fig 6.12 Landsat MSS band 7
  • July image ? 200 m3/sec
  • March image ? 1300 m3/sec ? once every four years
  • Fig 6.13 Mississippi River Delta
  • Silt flow but vague boundary ? band 5
  • Delineation of the boundary ? band 7
  • Fig 6.14 short-lived phenomena
  • Active forest fire in Alaska
  • Volcanic eruption on Kunashir Island

22
6.6 Landsat MSS image interpretation (cont.)
  • A hit-or-miss proposition (cont.)
  • Fig 6.15 Extensive geologic features visible on
    MSS
  • San Andreas fault, Six solid dots ? earthquake gt
    6.0
  • Fig 6.16 Landsat MSS band 6
  • 66-km-wide Manicouagan ring ? 212-million-year-old
    meteorite impact crater
  • Fig 6.17 Landsat MSS images of Mt. St. Helens
    before and after its 1980 eruptions
  • Fig 6.18 Landsat MSS image of Maritoba, Canada,
    showing tornado and hail scar
  • Fig 6.19 Landsat MSS image of East kalimantan,
    Indonesia, showing tropical deforestation

23
6.7 Orbit characteristics of Landsat-4 and -5
  • Fig 6.20 Sun-synchronous orbit of Landsat-4 and
    5
  • Altitude 900 ? 705km
  • Retrievable by the space shuttle
  • Ground resolutions
  • Inclination 98.20 ?T99min ? 14.5 orbit/day
  • 945 am
  • Fig 6.21 adjacent orbit space 2752km
  • 16-day repeat cycle
  • 8-day phase between Landsat-4 and 5 (Fig 6.22)

24
6.8 Sensors onboard Landsat-4 and -5
  • Fig 6.23 Landsat-4 and 5 observatory
    configuration
  • MSS, TM
  • 2000 kg, 1.5x2.3m solar panels x 4 on one side
  • High gain antenna ? Tracking and Data Relay
    Satellite system (TDRSS)
  • Direct transmission ? X-band and S-band
  • MSS 15 Mbps
  • TM 85 Mbps

25
6.8 Sensors onboard Landsat-4 and 5 (cont.)
  • MSS
  • Same as previous except for larger TFOV for
    keeping the same ground resolution (79m ? 82m)
  • Renumber bands
  • TM
  • 7 bands (Table 6.4)
  • DN 6 ? 8 bits
  • Ground resolution 30m (thermal band 120m)
  • Geometric correction ? Space Oblique Mercator
    (SOM) cartographic projection

26
6.8 Sensors onboard Landsat-4 and 5 (cont.)
  • TM (cont.)
  • Bi-directional scan ? the rate of oscillation of
    mirror dwelling time ? geometric integrity
    signal-to-noise
  • Detector
  • MSS 6x424
  • TM 16x64x1100
  • Fig 6.24 Thematic Mapper optical path and
    projection of IFOV on earth surface
  • Fig 6.25 Schematic of TM scan line correction
    process

27
6.9 Landsat TM Image interpretation
  • Pros
  • Spectral and radiometric resolution
  • Ground resolution
  • Fig 6.26 MSS vs TM
  • Fig 6.27 All seven TM bands for a summertime
    image of an urban fringe area
  • Lake, river, ponds b1,2 gt b3 gt b4b5b70
  • Road urban streets b4 ? min
  • Agricultural crops b4 ? max
  • Golf courses

28
6.9 Landsat TM Image interpretation (cont.)
  • Fig 6.27 (cont.)
  • Glacial ice movement upper right ? lower left
  • Drumlins, scoured bedrock hills
  • Band 7 ? resample from 120m to 30m
  • Plate 12 Table 6.5 TM band color combinations
  • (a) normal color ? mapping of water sediment
    patterns
  • (b) color infrared ? mapping urban features and
    vegetation types
  • (c)(d) false color

29
6.9 Landsat TM Image interpretation (cont.)
  • Fig 6.28 Landsat TM band 6 (thermal infrared)
    image
  • Correlation with field observations ? 6 gray
    levels ? 6T
  • Plate 13 color-composite Landsat TM image
  • Extremely hot ? blackbody radiation ? thermal
    infrared
  • TM bands 3, 4 and 7

30
6.9 Landsat TM Image interpretation (cont.)
  • Fig 6.29 Landsat TM band 5 (mid-infrared) image
  • Timber clear-cutting
  • Fig 6.30 Landsat TM band 3, 4 and 5 composite
  • Extensive deforestation.
  • Fig 6.31 Landsat TM band 4 image map
  • 13 individual TM scenes mosaic

31
6.10 Landsat-6 planned mission
  • A failed mission
  • Enhanced Thematic Mapper (ETM)
  • TM panchromatic band (0.50.9 mm) with 15m
    resolution.
  • Set 9-bit A-to-D converter to a high or low gain
    8-bit setting from the ground.
  • Low reflectance ? water ? high gain
  • Bright region ? deserts ? low gain

32
6.11 Landsat ETM image simulation
  • Fig 6.32 Landsat ETM images

33
6.12 Landsat-7
  • Launch 1999
  • Web site http//landsat.gsfc.nasa.gov
  • Landsat 7 handbook
  • Landsat 7 in orbit
  • Depiction of Landsat 7

34
6.12 Landsat-7 (cont.)
  • Landsat 7 Orbit
  • Orbital paths
  • Swath
  • Swath pattern
  • Landsat data
  • http//landsat.gsfc.nasa.gov/main/data.html

35
6.12 Landsat-7 (cont.)
  • Payload
  • Enhanced Thematic Mapper Plus (ETM)
  • Dual mode solar calibrator
  • Data transmission
  • TDRSS or stored on board.
  • GPS ? subsequent geometric processing of the data
  • High Resolution Multi-spectral Stereo Imager
    (HRMSI)
  • 5m panchromatic band
  • 10m ETM bands 14
  • Pointable ? revisit time (lt3 days) Stereo
    imaging.
  • 00380 cross-track and 00300 along-track

36
6.12 Landsat-7 (cont.)
  • Application
  • Monitoring Temperate Forests
  • Mapping Volcanic Surface Deposits
  • Three Dimensional Land Surface Simulations

37
6.13 SPOT Satellite Program
  • Background
  • FrenchSwedenBelgium
  • 1978
  • Commercially oriented program
  • SPOT-1
  • French Guiana, Ariane Rocket
  • 1986
  • Linear array sensorpushbroom scanningpointable
  • Full-scene stereoscopic imaging

38
6.13 SPOT Satellite Program (cont.)
  • SPOT-2
  • 1990
  • SPOT-3
  • 1993

39
6.14 Orbit characteristics of SPOT-1, -2 and -3
  • Orbit
  • Circular, near-polar, sun-synchronous orbit
  • Altitude 832km
  • Inclination 98.70
  • Descend across the equator at 1030AM
  • Repeat 26 days
  • Fig 6.33 SPOT revisit pattern at latitude 450
    and 00
  • At equator 7 viewing opportunities exist
  • At 450 11 viewing opportunities exist

40
6.15 Sensors onboard SPOT-1, -2 and -3
  • Configuration (Fig 6.34)
  • 2?2?3.5m, 1750 kg, solar panel 15.6m
  • Modular design
  • High Resolution Visible (HRV) imaging system
  • 2-mode
  • 10m-resolution panchromatic mode (0.510.73mm)
  • 20m-resolution color-infrared mode. (0.50.59mm,
    0.610.68mm, 0.790.89mm)

41
6.15 Sensors onboard SPOT-1, -2 and 3 (cont.)
  • HRV (cont.)
  • Pushbroom scanning
  • No moving part (mirror) ? lifespan?
  • Dwell time ?
  • Geometric error ?
  • 4-CCD subarray
  • 6000-element subarray ? panchromatic mode, 10m
  • Three 3000-element subarrays ? multi-spectral
    mode, 20m
  • 8-bit, 25 Mbps
  • Twin-HRV instruments
  • IFOV (for each instrument) ? 4.130
  • Swath 60km ? 2 - 3km 117km (Fig 3.36)
  • TFOV (for each instrument) ? 2700.60?45 (Fig
    3.35)

42
6.15 Sensors onboard SPOT-1, -2 and 3 (cont.)
  • HRV (cont.)
  • Data streams
  • Although 2-mode can be operated simultaneously,
    only one mode data can be transmitted ?
    limitation of data stream
  • Stereoscopic imaging
  • Off-nadir viewing capability (Fig 6.37)
  • Frequency ? revisit schedule (Fig 6.33)
  • Base-height ratio ? latitude
  • 0.75 at equator, 0.5 at 450
  • Control
  • Ground control station ? Toulouse, France ?
    observation sequence
  • Receiving station ? Tordouse or Kiruna, Sweden
  • Tape recorded onboard
  • Transmitted within 2600km-radius around the
    station

43
6.16 SPOT HRV image interpretation
  • Fig 6.38 SPOT-1 panchromatic image
  • 10m-resolution
  • Cf Landsat MSS 80m
  • Cf Landsat TM 30m (Fig 6.26)
  • Cf Landsat ETM 15m (Fig 6.32)
  • Fig 6.39 SPOT-1 panchromatic image
  • Plate14 merge of multispectral panchromatic
    data
  • Fig 6.40 SPOT-1 panchromatic image stereopair
  • Plate 15 Perspective view of Alps
  • SPOT stereopair parallax calculation
  • Plate 23
  • Fig 6.41 before and after the earthquake

44
6.17 SPOT 4 and 5
  • SPOT 4
  • Launched 1998
  • Vegetation Monitoring Instrument (VMI)
  • Swath 2000km ? daily global coverage
  • Resolution 1km
  • Spectral band b(0.430.47mm), g(0.50.59mm),
    r(0.610.68mm), N-IR(0.790.89mm),
    mid-IR(1.581.75mm)

45
6.17 SPOT 4 and 5 (cont.)
  • SPOT 5
  • Launched 2002
  • Vegetation Monitoring Instrument (VMI)
  • Swath 2000km ? daily global coverage
  • Resolution 1km
  • Spectral band b(0.430.47mm), g(0.50.59mm),
    r(0.610.68mm), N-IR(0.790.89mm),
    mid-IR(1.581.75mm)

46
6.18 Meteorological Satellite
  • Metsats
  • Coarse spatial resolution ? land-oriented system
  • Very high temporal resolution of global coverage
  • NOAA satellites ? sun-synchronous
  • GOES ? geostationary ? 36,000km altitude
  • DMSP

47
6.18 Meteorological Satellite (cont.)
  • NOAA satellites
  • Advanced Very High Resolution Radiometer (AVHRR)
  • NOAA 6 -12. (N-S)
  • Even 730AM crossing time
  • Odd 230 AM crossing time
  • Table 6.6 characteristics of NOAA-6 -12
  • Fig 6.42 Example coverage of the NOAA AVHRR
  • Ground resolution 1.1km at nadir
  • AVHRR data
  • LAC
  • GAC
  • Fig 6.43 Comparison of Spectral sensitivity

48
6.18 Meteorological Satellite (cont.)
  • NOAA satellites (cont.)
  • Fig 6.44 AVHRR images
  • A distortion ? wide angle of view
  • B geometric correction
  • Plate 16 NOAA AVHRR band 4 thermal image of the
    Great Lakes
  • Fig 6.45 AVHRR images of the Mississippi Delta
  • (a) present and past channels, future ?
    Atchafalaya
  • (b) Channel1 (red), silky material ? visible
  • (c) Channel2 (Near-IR), light tone ? higher
    drier
  • (d) Channel4 (thermal IR) light tone ? cooler
  • Plumes of cooler river water

49
6.18 Meteorological Satellite (cont.)
  • NOAA satellites (cont.)
  • Plate 17 springtime NOAA-8 AVHRR color composite
  • Applications of AVHRR in monitoring vegetation
  • Use Ch-1 (0.580.68 mm) and Ch-2 (0.731.10 mm)
  • A simple vegetation index VICh2-Ch1
  • Normalized difference vegetation index NDVI
    (Ch2-Ch1)/(Ch2Ch1)
  • Vegetated areas ? large VI
  • Clouds, water, snow ? negative VI
  • Rock, Bare soil ? VI ? 0
  • For global vegetation ? NDVI preferred ?
    compensate the charging illumination conditions
  • Plate 18 color-coded NDVI
  • Select the highest NDVI during that period

50
6.18 Meteorological Satellite (cont.)
  • NOAA satellites (cont.)
  • Applications of AVHRR in monitoring vegetation
    (cont.)
  • Applications vegetation seasonal dynamics at
    global and continental scale, tropical forest
    clearance, leaf area index measurement, biomass
    estimation, percentage ground cover
    determination, photosynthetically active
    radiation estimation
  • Other factors that might influence NDVI
  • Incident solar radiation
  • Radiometric response of the sensor
  • Atmospheric effect and viewing angle ? need
    further research

51
6.18 Meteorological Satellite (cont.)
  • GOES (Geostationary Operational Environmental
    Satellites)
  • NOAA NASA
  • 1974
  • 36,000km
  • USRS, ESA, NSDA
  • Fig 6.46 GOES 2 visible band (0.550.7 mm)
  • Frequency 2/hour
  • VI (daytime), IR (day and night)

52
6.18 Meteorological Satellite (Cont.)
  • Defense Meteorological Satellite Program (DMSP)
  • 1973
  • 0.41.1 mm (VIN-IR)
  • Nighttime visible band ? tune the amplifiers
  • Fig 6.47 DMSP nighttime image
  • Fig 6.48 Maps of population distribution

53
6.19 Ocean monitoring satellites
  • Ocean ? Land
  • 2/3, but comparatively little is know
  • Seasat (see 8.9)
  • Nimbus 7
  • CZCS (Coastal Zone Color Scanner) 19781986
  • Proof of concept mission
  • Table 6.7 CZCS bands ? narrow bandwidth
  • 825m resolution at nadir, 1566km swath
  • Map phytoplankton concentrations and inorganic
    suspended matter
  • N-IR ? separate water from land

54
6.19 Ocean monitoring satellites (cont.)
  • Japan
  • Marine Observation Satellite (MOS)-1 1987
  • MOS-1b 1990
  • Table 6.8 Instruments included in MOS-1 and
    MOS-1b
  • 4-Channel Multi-spectral Electronic Self-Scanning
    Radiometer (MESSR)
  • 4-Channel Visible and Thermal Infrared Radiometer
    (VTIR)
  • 2-Channel Microwave Scanning Radiometer (MSR)
  • 909km altitude, revisit period17days

55
6.19 Ocean monitoring satellites (cont.)
  • Sea-viewing Wide-Field-of-View Sensor (SeaWiFS)
  • 8-channel across-track scanner (0.4020.885 mm)
  • Ocean biogeochemistry
  • NASA-orbital science corporation (OSC)
  • 1998 date
  • Data
  • LAC 1.13km
  • GAC 4.52km
  • 705km altitude, 2800km swath

56
6.20 Earth Observing System
  • Mission to Planet Earth (MTPE)
  • Aims providing the observations, understanding,
    and modeling capabilities needed assess the
    impacts of natural events and human-induced
    activities on the earths environment
  • Data and information system acquire, archive and
    distribute the data and information collected
    about the earth
  • Further international understanding of the earth
    as a system

57
6.20 Earth Observing System (cont.)
  • EOS (Table 6.9)
  • ASTER
  • CERES
  • MISR
  • MODIS
  • MOPITT
  • MODIS (Table 6.10)
  • Table 6.10
  • Terra 2000
  • Aqua 2002

58
6.21 Fine-resolution satellite system
  • CORONA
  • 1960 1972, declassified in 1995
  • KH-1 KH-4B KH-5
  • Camera film
  • Band and resolution
  • Web site http//earthexplorer.usgs.gov
  • Impacts

59
6.21 Fine-resolution satellite system (cont.)
  • IKONOS
  • 1999 by Space imaging
  • Bands and resolution
  • 1m-resolution
  • 0.45 0.90 mm
  • 4m-resolution
  • 0.45 0.52 mm
  • 0.52 0.60 mm
  • 0.63 0.69 mm
  • 0.76 0.90 mm
  • Orbit sun-synchronous
  • Repeat coverage 1.5 (1m) 3 (4m) days

60
6.21 Fine-resolution satellite system (cont.)
  • OrbView3 and 4
  • http//www.orbimage.com
  • OrbView-2 SeaWiFS
  • Will be launched soon!
  • Similar bands and resolution as IKONOS
  • OrbView4
  • 200 spectral channels in the range 0.45 2.5 m m
    at 8m resolution

61
6.21 Fine-resolution satellite system (cont.)
  • QuickBird
  • 2001 by EarthWatch Inc.
  • Bands and resolution
  • 61cm-resolution
  • 0.45 0.89 mm
  • 2.44m-resolution
  • 0.45 0.52 mm
  • 0.52 0.60 mm
  • 0.63 0.69 mm
  • 0.76 0.89 mm
Write a Comment
User Comments (0)
About PowerShow.com