Title: 2D Haar Wavelet Transform for Image Compression
12D Haar Wavelet Transform for Image Compression
- Geometric Modeling Project
- Young Lee
2What is Wavelet transform?
- Approximation using superposition of functions
using wavelet prototype function - i.e. Fourier series
- f(x) Sn (an cos(nx) bn sin(nx))
-
3What to do with wavelets?
- History is short
- Lots of applications data analysis/process, data
compression, denoising, feature extraction, image
segmentation, storing, synthesizing, fractal, etc
4Background
- The limit of Fourier Transform no time
resolution Not good for non-stationary signals - Time-frequency joint representation is necessary
gt solution Wavelet transform - Scale is used instead of frequency
- Represented in time-scale space
- Principle of uncertainty frequency vs. time
5(No Transcript)
6(No Transcript)
7Important properties of wavelet
- Admissibility condition
- ? ?(w) 2 / w dw lt ?
- ?(w) 2 w0 0
- ? ?(t) dt 0
- band-pass filter
- Vanishing moment
- ? ?(t) tm dt 0 m 0,1,,M-1
- Gives fast decay of the wave
8Wavelet prototype function a.k.a. Mother wavelet
Y(t)
- Haar ?(t) 1 (0 t 1), -1 (-1 t 0)
- 0 otherwise
- Mexican hat ?(t) (1-t2) e-t2/2
-
9 Mexican Hat Haar
10Continuous wavelet transform (CWT)
- Continuous Wavelet Function
- ? a,b (t) a-1/2 ?((t-b)/a)
- a dilation factor, b translation factor
- a-1/2 Energy conservation weighting value when
- E ? ?(t) 2 dt
- Continuous Wavelet Transform
- T(a,b) ? x(t) ?a,b (t) dt
-
11-
- Inverse wavelet transform
- x(t) ? ? T(a,b) ?a,b (t) da db/a2
- Original signal is recovered from its wavelet
transform by integrating over all scales and
locations, i.e. a and b
12Discrete Wavelet Transform (DWT)
- Dyadic grid for efficient discretization
- Discrete Wavelet Function
- Common choices for DWT wavelet parameters
- a and b is 2 and 1
- ?m,n(t) 2-m/2 ?(2-m t n )
- Property
- ? ?m,n(t) ?m,n(t) dt 1 if m m, n n
- 0 otherwise
13- Discrete wavelet transform
- Tm,n ? x(t) ?m,n(t) dt
- Inverse wavelet transform
- x(t) Sm,n Tm,n ?m,n(t) when -?ltm,nlt?
- Arbitrary signal can be reconstructed using
wavelet coefficients - Problem number of m,n is infinite
14Scaling function a.k.a. Father wavelet
- Scaling function
- ?(t) Sm,n Tm,n ?m,n(t)
- On a dyadic grid
- ?m,n(t) 2-m/2 ?(2-m t n)
- Properties
- ? ?(t) dt 1
- Low-pass filter
15Multiresolution formulation
- Scaling and wavelet function
- ?m1,n(t) 2-m/2 Sk ck ?m,2nk(t)
- ?m1,n(t) 2-m/2 Sk bk ?m,2nk(t)
- Approximation and wavelet coefficients
- Sm1,n 2-m/2 Sk ck Sm,2nk
- Tm1,n 2-m/2 Sk bk Sm,2nk
16Signal reconstruction using multiresolution
formulation
- xm(t) Sn Sm,n ?m,n(t)
- dm(t) Sn Tm,n ? m,n(t)
- xm-1(t) xm(t) dm(t) ? xm(t) xm-1(t) - dm(t)
- x(t) xm0(t) Smm0dm(t)
- x(t) Sn Sm0,n ?m0,n(t) Smm0Sn Tm,n ?m,n(t)
- SM,0 ?M,0(t) SmMSn Tm,n ?m,n(t)
17Energy conservation
- Energy of Input signal
- E Sn (S0,n)2
- Energy of final decomposition
- E (SM,n)2 SmMSn(Tm,n)2
- Energy of each stage
- E Si (W(m)i )2
- gt All remains constant
182D Haar wavelet transform
- 2D scaling function
- ?(t1,t2) ?(t1)?(t2) ltgt ½1 11 1
- 2D horizontal wavelet
- ?h(t1,t2) ?(t1)?(t2) ltgt ½1 -11 -1
- 2D vertical wavelet
- ?v(t1,t2) ?(t1) ?(t2) ltgt ½1 1-1 -1
- 2D diagonal wavelet
- ?d(t1,t2) ?(t1) ?(t2) ltgt ½1 -1-1 1
19Schematic diagram in comparison
- 1D decomposition
- S0
- S1,n T1,n
-
- S2,n T2,n
- 2D decomposition
- S0
- S1,n Tv1,n Th1,n Td1,n
- S2,n Tv2,n Th2,n Td2,n
20Decomposition of Lena image
21(No Transcript)
22Wavelet coefficient histogram at each scale
23(No Transcript)
24(No Transcript)
25(No Transcript)
26Energy conservation in 2D
- E Si,j (X0 i,j )2 Si,j (W(m)i,j )2
- Energy is well represented by just a few wavelet
coefficients - gt Image compression has taken place !!
27Reconstruction in 2D
- Xm-1 Xm Dm
- X0 XM SmM Dm
- when
- Dm Dmv Dmh Dmd
- Dmv Tmv ?mv , Dmh Tmh ?mh , and
- Dmd Tmd ?md
- XM SM ?M
-
28Reconstruction of Lena image
29 30 31Image compression procedure
- Choose a wavelet type and decomposition level
- Compute decomposition of signal
- Remove coefficients less than given threshold
- Reconstruct signal
32Image compression
33Image compression
34Image compression
35Image compression
36Advantages and disadvantagesof Haar Wavelet
- Advantage
- Simple and fast
- DisadvantageHarsh aliases horizontal and
vertical discontinuities - gt Solution Right choice of wavelet - smoother,
overlapping kind of wavelets
37Daubechies Wavelets
- Dont have explicit analytic formulation
- Satisfy wavelet criteria
- Have compact support
- Smooth to some degree
38Conclusion
- Wavelet transform is an excellent tool for data
compression
39