2D Haar Wavelet Transform for Image Compression - PowerPoint PPT Presentation

1 / 39
About This Presentation
Title:

2D Haar Wavelet Transform for Image Compression

Description:

2D Haar Wavelet Transform for Image Compression Geometric Modeling Project Young Lee – PowerPoint PPT presentation

Number of Views:1355
Avg rating:3.0/5.0
Slides: 40
Provided by: Youn137
Category:

less

Transcript and Presenter's Notes

Title: 2D Haar Wavelet Transform for Image Compression


1
2D Haar Wavelet Transform for Image Compression
  • Geometric Modeling Project
  • Young Lee

2
What is Wavelet transform?
  • Approximation using superposition of functions
    using wavelet prototype function
  • i.e. Fourier series
  • f(x) Sn (an cos(nx) bn sin(nx))

3
What to do with wavelets?
  • History is short
  • Lots of applications data analysis/process, data
    compression, denoising, feature extraction, image
    segmentation, storing, synthesizing, fractal, etc

4
Background
  • The limit of Fourier Transform no time
    resolution Not good for non-stationary signals
  • Time-frequency joint representation is necessary
    gt solution Wavelet transform
  • Scale is used instead of frequency
  • Represented in time-scale space
  • Principle of uncertainty frequency vs. time

5
(No Transcript)
6
(No Transcript)
7
Important properties of wavelet
  • Admissibility condition
  • ? ?(w) 2 / w dw lt ?
  • ?(w) 2 w0 0
  • ? ?(t) dt 0
  • band-pass filter
  • Vanishing moment
  • ? ?(t) tm dt 0 m 0,1,,M-1
  • Gives fast decay of the wave

8
Wavelet prototype function a.k.a. Mother wavelet
Y(t)
  • Haar ?(t) 1 (0 t 1), -1 (-1 t 0)
  • 0 otherwise
  • Mexican hat ?(t) (1-t2) e-t2/2

9
Mexican Hat Haar
10
Continuous wavelet transform (CWT)
  • Continuous Wavelet Function
  • ? a,b (t) a-1/2 ?((t-b)/a)
  • a dilation factor, b translation factor
  • a-1/2 Energy conservation weighting value when
  • E ? ?(t) 2 dt
  • Continuous Wavelet Transform
  • T(a,b) ? x(t) ?a,b (t) dt

11
  • Inverse wavelet transform
  • x(t) ? ? T(a,b) ?a,b (t) da db/a2
  • Original signal is recovered from its wavelet
    transform by integrating over all scales and
    locations, i.e. a and b

12
Discrete Wavelet Transform (DWT)
  • Dyadic grid for efficient discretization
  • Discrete Wavelet Function
  • Common choices for DWT wavelet parameters
  • a and b is 2 and 1
  • ?m,n(t) 2-m/2 ?(2-m t n )
  • Property
  • ? ?m,n(t) ?m,n(t) dt 1 if m m, n n
  • 0 otherwise

13
  • Discrete wavelet transform
  • Tm,n ? x(t) ?m,n(t) dt
  • Inverse wavelet transform
  • x(t) Sm,n Tm,n ?m,n(t) when -?ltm,nlt?
  • Arbitrary signal can be reconstructed using
    wavelet coefficients
  • Problem number of m,n is infinite

14
Scaling function a.k.a. Father wavelet
  • Scaling function
  • ?(t) Sm,n Tm,n ?m,n(t)
  • On a dyadic grid
  • ?m,n(t) 2-m/2 ?(2-m t n)
  • Properties
  • ? ?(t) dt 1
  • Low-pass filter

15
Multiresolution formulation
  • Scaling and wavelet function
  • ?m1,n(t) 2-m/2 Sk ck ?m,2nk(t)
  • ?m1,n(t) 2-m/2 Sk bk ?m,2nk(t)
  • Approximation and wavelet coefficients
  • Sm1,n 2-m/2 Sk ck Sm,2nk
  • Tm1,n 2-m/2 Sk bk Sm,2nk

16
Signal reconstruction using multiresolution
formulation
  • xm(t) Sn Sm,n ?m,n(t)
  • dm(t) Sn Tm,n ? m,n(t)
  • xm-1(t) xm(t) dm(t) ? xm(t) xm-1(t) - dm(t)
  • x(t) xm0(t) Smm0dm(t)
  • x(t) Sn Sm0,n ?m0,n(t) Smm0Sn Tm,n ?m,n(t)
  • SM,0 ?M,0(t) SmMSn Tm,n ?m,n(t)

17
Energy conservation
  • Energy of Input signal
  • E Sn (S0,n)2
  • Energy of final decomposition
  • E (SM,n)2 SmMSn(Tm,n)2
  • Energy of each stage
  • E Si (W(m)i )2
  • gt All remains constant

18
2D Haar wavelet transform
  • 2D scaling function
  • ?(t1,t2) ?(t1)?(t2) ltgt ½1 11 1
  • 2D horizontal wavelet
  • ?h(t1,t2) ?(t1)?(t2) ltgt ½1 -11 -1
  • 2D vertical wavelet
  • ?v(t1,t2) ?(t1) ?(t2) ltgt ½1 1-1 -1
  • 2D diagonal wavelet
  • ?d(t1,t2) ?(t1) ?(t2) ltgt ½1 -1-1 1

19
Schematic diagram in comparison
  • 1D decomposition
  • S0
  • S1,n T1,n
  • S2,n T2,n
  • 2D decomposition
  • S0
  • S1,n Tv1,n Th1,n Td1,n
  • S2,n Tv2,n Th2,n Td2,n

20
Decomposition of Lena image
21
(No Transcript)
22
Wavelet coefficient histogram at each scale
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
Energy conservation in 2D
  • E Si,j (X0 i,j )2 Si,j (W(m)i,j )2
  • Energy is well represented by just a few wavelet
    coefficients
  • gt Image compression has taken place !!

27
Reconstruction in 2D
  • Xm-1 Xm Dm
  • X0 XM SmM Dm
  • when
  • Dm Dmv Dmh Dmd
  • Dmv Tmv ?mv , Dmh Tmh ?mh , and
  • Dmd Tmd ?md
  • XM SM ?M

28
Reconstruction of Lena image
  • X8 X7 X6

29
  • X5 X4 X3

30
  • X2 X1 X0

31
Image compression procedure
  • Choose a wavelet type and decomposition level
  • Compute decomposition of signal
  • Remove coefficients less than given threshold
  • Reconstruct signal

32
Image compression
  • Compression rate 25

33
Image compression
  • Compression rate 90

34
Image compression
  • Compression rate 95

35
Image compression
  • Compression rate 98

36
Advantages and disadvantagesof Haar Wavelet
  • Advantage
  • Simple and fast
  • DisadvantageHarsh aliases horizontal and
    vertical discontinuities
  • gt Solution Right choice of wavelet - smoother,
    overlapping kind of wavelets

37
Daubechies Wavelets
  • Dont have explicit analytic formulation
  • Satisfy wavelet criteria
  • Have compact support
  • Smooth to some degree

38
Conclusion
  • Wavelet transform is an excellent tool for data
    compression

39
  • Questions?
Write a Comment
User Comments (0)
About PowerShow.com