Title: Basic Principles of Interferometry Pierre L
1Basic Principles of InterferometryPierre Léna,
Université Paris VII Observatoire de
ParisInterferometry Week, Santiago-du-Chili,
January 14-16, 2002VERSION Jan.18, 2002
- 1. The Young Experiment its Telescope
Equivalent - 2. From Fizeau to the VLTI
- 3. Object, Instrument, Image Fourier spectra
- 4. Coherence of radiation
- 5. Measuring coherence with an ideal
interferometer - 6. From the visibility to an image
- 7. Types of interferometers
- 8. Effects of the Earths atmosphere
- 9. Methods of light recombination
- 10. Signal detection noise sources, sensitivity
- 11. Astrometry with an interferometer
21. The Thomas Young Experiment
- A founding experiment
- Fringes spatial structure of the source
- The Telescope Equivalent
3Reference Glindeman, A., VLTI tutorial
http//www.eso.org/projects/vlti/general/tutorial_
introduction_to_stellar_interf.pdf
4The Golden Rules of Interferometry
- Relative modulation amplitude V (from 1 to 0) of
the fringe pattern is related to the source
angular size (a). - For a given source angular size, modulation
amplitude decreases when separation of holes (B)
increases. - For wavelength l, modulation becomes sensitive to
size when a gt l /B
5Wavelength l
V.L.T.
Baseline B
62. From Fizeau to the VLTI
- 1802 Fringes and nature of light Thomas Young,
Londres - 1868 Concept of interferometry with pupil
mask Hippolyte Fizeau, Paris - 1872 Upper limit (0.158) of stellar
diameter Edouard Stephan, Marseille - 1921 First stellar diameter measurement Albert
Michelson, Pasadena - 1950 First radio-interfometer Martin Ryle,
Cambridge - 1956 First intensity interferometer (visible) R.
Hanbury-Brown R. Twiss - 1970 Speckle interferometry (visible) Antoine
Labeyrie, Paris - 1972 First heterodyne fringes (10 ?m) Jean Gay
Alain Journet, Grasse - 1973 Deconvolution algorithm Leon Lucy
- 1975 Triple correlation (visible) Gerd Weigelt,
Nuremberg - 1976 Coupling two independent telescopes Antoine
Labeyrie, Paris - 1987 Decision of VLT Interferometer Observatoire
Européen Austral - 1989 First adaptive optics image (2.2 ?m) Gérard
Rousset et al, Paris ESO - 1996 First interferometric image (visible) James
Baldwin, Cambridge - 2001 VLTI Keck Interferometer first light C.
Paranal, Chili Mauna Kea - 2001 Adaptive optics on VLT (NAOS) Cerro
Paranal, Chili
7Albert Michelsons Interferometric set-up, Mt.
Wilson, Calif. 1920
8Reference Glindeman, A., VLTI tutorial
http//www.eso.org/projects/vlti/general/ tutorial
_introduction_to_stellar_interf.pdf
9Antennas or telescopes ?
Cambridge (UK) 1957, l 1.7 m From Ryles Nobel
Prize lecture, 1974
10From Ryles Nobel Prize lecture, 1974
11The first Labeyrie interferometer (1975-1980)
Fringes on Vega at l 550 nm
12(No Transcript)
13Three methods to achieve coherent combination of
light
- change the frequency of light at each telescope,
- carry to the common focus an Intermediate
Frequency (IF) Signal, combine all these
signals (fringes) - heterodyne interferometer (l from10 mm to
mm-cm) - receive the light at each telescope on a quantum
detector - correlate the photo-currents
- intensity interferometer (visible l)
- Carry the light from each telescope to a common
focus - combine coherently, then detect interferometric
signal (fringes), - direct interferometer (optical l)
14The Narrabri (Australia) Intensity
Interferometer, constructed after the initial
success of Hanbury-Brown Twiss correlation on
Sirius at visible wavelengths Nature (1956),
177, 27-29
152. From Fizeau to the VLTI
- 1802 Fringes and nature of light Thomas Young,
Londres - 1868 Concept of interferometry with pupil
mask Hippolyte Fizeau, Paris - 1872 Upper limit (0.158) of stellar
diameter Edouard Stephan, Marseille - 1921 First stellar diameter measurement Albert
Michelson, Pasadena - 1950 First radio-interfometer Martin Ryle,
Cambridge - 1956 First intensity interferometer (visible) R.
Hanbury-Brown R. Twiss - 1970 Speckle interferometry (visible) Antoine
Labeyrie, Paris - 1972 First heterodyne fringes (10 ?m) Jean Gay
Alain Journet, Grasse - 1973 Deconvolution algorithm Leon Lucy
- 1975 Triple correlation (visible) Gerd Weigelt,
Nuremberg - 1976 Coupling two independent telescopes Antoine
Labeyrie, Paris - 1987 Decision of VLT Interferometer Observatoire
Européen Austral - 1989 First adaptive optics image (2.2 ?m) Gérard
Rousset et al, Paris ESO - 1996 First interferometric image (visible) James
Baldwin, Cambridge - 2001 VLTI Keck Interferometer first light C.
Paranal, Chili Mauna Kea - 2001 Adaptive optics on VLT (NAOS) Cerro
Paranal, Chili
16 3. Object, Instrument, Image
Fourier spectra
- Object, instrument, image
- Intensity (irradiance) in object/image and its
spatial spectrum - Instrument as a spatial filter
- Modulation Transfer Function (MTF)
- Point Spread Function (PSF)
- Isoplanatism
- Degraded MTFs aberrations, atmosphere
174. Coherence of radiation
- The field radiation ?(r,t) and the source
characteristics - Temporal coherence
- Spatial coherence
- Spatio-temporal coherence ?12(?)
- Quasi-monochromatic case
- Coherence over an illuminated surface the
Zernike-van Cittert theorem - Area of coherence Ac , étendue Ac ? l2, volume
of coherence - Beam transport coherence
18(No Transcript)
19(No Transcript)
20 5. Measuring coherence with an ideal
interferometer
- Principles of coherence (correlation) measurement
- Fringes, complex visibility source spatial
spectrum - Some simple sources
- - point-like
- - uniform disk
- - binary star
- Wavefront structure
- - loss of coherence diffraction, scattering,
atmospheric propagation - - corrugation of amplitude and/or phase of
visibility -
21(No Transcript)
22Measuring spatial coherence visibility
amplitudes in optical interferometry
Uniform disc star (Perrin,G. et al)
From A. Glindemans VLTI tutorial
23Chromatic dependence of spatial coherence
The star g Cass M16 Msun, R6Rsun, D100 pc
GI2T Interferometer, Calern, France - Mourard et
al., 1999
246. From the visibility to an image
- Multiple baselines synthetized pupil
- The Single Telescope/Antenna MTF (Primary Beam)
- The Interferometer MTF (Dirty Beam)
- From Fourier space (visibilities) to image space
(N -gt N) - Filling holes of the MTF deconvolution
techniques ( cleaning ) - Restoring a good PSF the densified pupil
25(No Transcript)
26(No Transcript)
27(No Transcript)
28Aperture synthesis
1. Object is the Fourier transform of g(B/l) 2.
g(B/l) is measured on a limited support -gt
Frequency cut-off 3. g(B/l) is measured on a
sparse domain -gt irregular PSF (Dirty beam)
B
Image plane (q)
Fourier plane (u,v)
N x N requires N x N
29(VLTI)
From A. Glindeman, VLTI tutorial
30An example of Interferometer Point Spread
Function (or Dirty Beam) The PSF of the OHANA
array (7 télescopes, source at zenith)
0.25 mas _at_ l 1 mm
This would be the image of a point source.
Cleaning the image of an extended object can
be done with different techniques of
deconvolution.
31Etoile Wolf-Rayet WR 104 Peter Tuthill,
Telescope Keck, 2000
32OHANA interferometer on Mauna Kea
337. Types of interferometers
LBT
- MTF of a real interferometer
- The Fizeau recombination (optical)
- The classical Michelson recombination (optical)
- The Heterodyne recombination (radio)
- Delay lines, coherencing, cophasing, fringe
tracking optical radio - Field-of-view of an interferometer optical
radio - Polarisation effects
- The densified pupil Michelson recombination
34A Fizeau interferometer The Large Binocular
Telescope (2 x 8.4 m), Mt Graham, Arizona
Interferometric field-of-view 1 arcmin (to
compare with VLTI 2 arcsec)
Orion proplyds, HST
23 m
6 arcsec
35coherencing
cophasing
wavetrain from telescope 1
wavetrain from telescope 2
zero OPD
temporal coherence length ctc
- Steps with metrology
- Coherencing find some fringes
- Cophasing adjust OPD0 from star to fringe
center through 1 2 - Fringe tracking maintain OPD0 with delay line
(compensating for - Diurnal, atmospheric or instrument instant
delays.
368. Effects of the Earths atmosphere
- Overview on atmospheric coherence loss
- Parameters ro(??? ?o(?? , ?o (??, Lo, lo
- Adaptive optics, principle
- - Zernike polynomials description of wavefront
- - Strehl ratio S
- Effects on interferometric observables
- - speckled fringes and visibility degradation
- - piston noise
- Closure phase
- Going to space !
-
37./.
38/...
39IDEAL
REEL
Gerd Weigelt, Bonn
40Création F. Lacombe, Meudon
41Simulations, Daniel Rouan, Meudon
42Loss of coherence (wavefront aberrations) on a
single telescope effect on fringes
Telescope 1
Telescope 2
(A. Glindeman, VLTI Tutorial)
43Loss of coherence (differential piston) between
2 telescopes effect on fringes
Atmospheric Piston at 2.2 mm
VLTI-UT1 UT3 - Oct.2001 on Achernar
44Star 2 is the bright object for piston tracking
Star 1 is the faint object to be measured
Star 2
Star 1
Piston tracking with reference
45A. Glindeman, VLTI Tutorial
46Summary of atmospheric effects on interferometric
observations
- adaptive optics on individual telescopes is
needed. - But Strehl S lt1 leads to visibility amplitude
loss and visibility noise, - limiting accuracy.
- piston noise between telescopes can not be
compensated. - Limits exposure time, hence restricts observation
to bright - objects adds noise onto visibility amplitude
measurement. - if differential piston is tracked on a
bright source, long time - integration can be achieved to determine V of a
faint source, - but atmosphere imposes a proximity (lt 1 arcmin).
- differential piston makes absolute phase
measurement of the - complex visibility impossible. Closure phase
partially solves this. - absolute phase of source can yet be measured, if
a known - (e.g. pointlike star, quasar) phase calibrator
lies close enough.
47 9. Methods
of light recombination
The VLTI Central Laboratory
- Internal metrology in an interferometer
- Image plane recombination
- - dispersed fringes spectral analysis
- - pupil reconfiguration (Ntélescopes gt 2)
- Pupil plane recombination
- - Double Fourier spectral analysis
- Integrated optics recombiners
- Dual-beam (dual-feed) operation
48(No Transcript)
49 10. Signal detection noise sources,
sensitivity
- From measured to real visibility calibration
- Expression of the interferometric signal
amplitude phase - Noise sources
- - signal photon noise (0.3 - 1 mm)
- - detector read-out noise (1 to 2.5 mm)
- - background (thermal) noise (2.5 mm -gt radio)
- - atmospheric noises (piston, scintillation)
all l - Sensitivity accuracy
-
50The interferometric signal (optical)
- Complex visibility V exp(if)
V
Measuring (unwrapped) f needs a reference
Telescope reference
Another nearby object (star)
Same object at different l
51The interferometric signal (optical)
- SIGNAL 1/2 . Intensity . Area . Spectral
bandwidth . - (polarisation) (source)(telescopes)
(detection) - Exposure time . Instrument transmission .
- (piston) (coatings,
detector) - . Instrument visibility . Source visibility.
Strehl ratio - (coherence losses) (source size)
(adaptive optics) - The noise
- NOISE Signal Photon noise / Detector noise/
Thermal noise / Atmospheric noise/.
52The FLUOR/VINCI principle to control intensity
fluctuations
(I1I2)1/2 V
Interferometric signal Photometric signals
V
(I1) 1/2(I2)1/2
53 11. Astrometry with an interferometer
54Interferomeric astrometry
Measure B, dinternal, f, deduce direction s (two
measurements required)
Phase f
Phase reference ?