Basic Principles of Interferometry Pierre L - PowerPoint PPT Presentation

About This Presentation
Title:

Basic Principles of Interferometry Pierre L

Description:

1956 First intensity interferometer (visible) R. Hanbury-Brown & R. Twiss ... The Narrabri (Australia) Intensity Interferometer, constructed after ... – PowerPoint PPT presentation

Number of Views:399
Avg rating:3.0/5.0
Slides: 55
Provided by: jea976
Learn more at: http://physics.gmu.edu
Category:

less

Transcript and Presenter's Notes

Title: Basic Principles of Interferometry Pierre L


1
Basic Principles of InterferometryPierre Léna,
Université Paris VII Observatoire de
ParisInterferometry Week, Santiago-du-Chili,
January 14-16, 2002VERSION Jan.18, 2002
  • 1. The Young Experiment its Telescope
    Equivalent
  • 2. From Fizeau to the VLTI
  • 3. Object, Instrument, Image Fourier spectra
  • 4. Coherence of radiation
  • 5. Measuring coherence with an ideal
    interferometer
  • 6. From the visibility to an image
  • 7. Types of interferometers
  • 8. Effects of the Earths atmosphere
  • 9. Methods of light recombination
  • 10. Signal detection noise sources, sensitivity
  • 11. Astrometry with an interferometer

2
1. The Thomas Young Experiment
  • A founding experiment
  • Fringes spatial structure of the source
  • The Telescope Equivalent

3
Reference Glindeman, A., VLTI tutorial
http//www.eso.org/projects/vlti/general/tutorial_
introduction_to_stellar_interf.pdf
4
The Golden Rules of Interferometry
  • Relative modulation amplitude V (from 1 to 0) of
    the fringe pattern is related to the source
    angular size (a).
  • For a given source angular size, modulation
    amplitude decreases when separation of holes (B)
    increases.
  • For wavelength l, modulation becomes sensitive to
    size when a gt l /B

5
Wavelength l
V.L.T.
Baseline B
6
2. From Fizeau to the VLTI
  • 1802 Fringes and nature of light Thomas Young,
    Londres
  • 1868 Concept of interferometry with pupil
    mask Hippolyte Fizeau, Paris
  • 1872 Upper limit (0.158) of stellar
    diameter Edouard Stephan, Marseille
  • 1921 First stellar diameter measurement Albert
    Michelson, Pasadena
  • 1950 First radio-interfometer Martin Ryle,
    Cambridge
  • 1956 First intensity interferometer (visible) R.
    Hanbury-Brown R. Twiss
  • 1970 Speckle interferometry (visible) Antoine
    Labeyrie, Paris
  • 1972 First heterodyne fringes (10 ?m) Jean Gay
    Alain Journet, Grasse
  • 1973 Deconvolution algorithm Leon Lucy
  • 1975 Triple correlation (visible) Gerd Weigelt,
    Nuremberg
  • 1976 Coupling two independent telescopes Antoine
    Labeyrie, Paris
  • 1987 Decision of VLT Interferometer Observatoire
    Européen Austral
  • 1989 First adaptive optics image (2.2 ?m) Gérard
    Rousset et al, Paris ESO
  • 1996 First interferometric image (visible) James
    Baldwin, Cambridge
  • 2001 VLTI Keck Interferometer first light C.
    Paranal, Chili Mauna Kea
  • 2001 Adaptive optics on VLT (NAOS) Cerro
    Paranal, Chili

7
Albert Michelsons Interferometric set-up, Mt.
Wilson, Calif. 1920
8
Reference Glindeman, A., VLTI tutorial
http//www.eso.org/projects/vlti/general/ tutorial
_introduction_to_stellar_interf.pdf
9
Antennas or telescopes ?
Cambridge (UK) 1957, l 1.7 m From Ryles Nobel
Prize lecture, 1974
10
From Ryles Nobel Prize lecture, 1974
11
The first Labeyrie interferometer (1975-1980)
Fringes on Vega at l 550 nm
12
(No Transcript)
13
Three methods to achieve coherent combination of
light
  • change the frequency of light at each telescope,
  • carry to the common focus an Intermediate
    Frequency (IF) Signal, combine all these
    signals (fringes)
  • heterodyne interferometer (l from10 mm to
    mm-cm)
  • receive the light at each telescope on a quantum
    detector
  • correlate the photo-currents
  • intensity interferometer (visible l)
  • Carry the light from each telescope to a common
    focus
  • combine coherently, then detect interferometric
    signal (fringes),
  • direct interferometer (optical l)

14
The Narrabri (Australia) Intensity
Interferometer, constructed after the initial
success of Hanbury-Brown Twiss correlation on
Sirius at visible wavelengths Nature (1956),
177, 27-29
15
2. From Fizeau to the VLTI
  • 1802 Fringes and nature of light Thomas Young,
    Londres
  • 1868 Concept of interferometry with pupil
    mask Hippolyte Fizeau, Paris
  • 1872 Upper limit (0.158) of stellar
    diameter Edouard Stephan, Marseille
  • 1921 First stellar diameter measurement Albert
    Michelson, Pasadena
  • 1950 First radio-interfometer Martin Ryle,
    Cambridge
  • 1956 First intensity interferometer (visible) R.
    Hanbury-Brown R. Twiss
  • 1970 Speckle interferometry (visible) Antoine
    Labeyrie, Paris
  • 1972 First heterodyne fringes (10 ?m) Jean Gay
    Alain Journet, Grasse
  • 1973 Deconvolution algorithm Leon Lucy
  • 1975 Triple correlation (visible) Gerd Weigelt,
    Nuremberg
  • 1976 Coupling two independent telescopes Antoine
    Labeyrie, Paris
  • 1987 Decision of VLT Interferometer Observatoire
    Européen Austral
  • 1989 First adaptive optics image (2.2 ?m) Gérard
    Rousset et al, Paris ESO
  • 1996 First interferometric image (visible) James
    Baldwin, Cambridge
  • 2001 VLTI Keck Interferometer first light C.
    Paranal, Chili Mauna Kea
  • 2001 Adaptive optics on VLT (NAOS) Cerro
    Paranal, Chili

16
3. Object, Instrument, Image
Fourier spectra
  • Object, instrument, image
  • Intensity (irradiance) in object/image and its
    spatial spectrum
  • Instrument as a spatial filter
  • Modulation Transfer Function (MTF)
  • Point Spread Function (PSF)
  • Isoplanatism
  • Degraded MTFs aberrations, atmosphere

17
4. Coherence of radiation
  • The field radiation ?(r,t) and the source
    characteristics
  • Temporal coherence
  • Spatial coherence
  • Spatio-temporal coherence ?12(?)
  • Quasi-monochromatic case
  • Coherence over an illuminated surface the
    Zernike-van Cittert theorem
  • Area of coherence Ac , étendue Ac ? l2, volume
    of coherence
  • Beam transport coherence

18
(No Transcript)
19
(No Transcript)
20
5. Measuring coherence with an ideal
interferometer
  • Principles of coherence (correlation) measurement
  • Fringes, complex visibility source spatial
    spectrum
  • Some simple sources
  • - point-like
  • - uniform disk
  • - binary star
  • Wavefront structure
  • - loss of coherence diffraction, scattering,
    atmospheric propagation
  • - corrugation of amplitude and/or phase of
    visibility

21
(No Transcript)
22
Measuring spatial coherence visibility
amplitudes in optical interferometry
Uniform disc star (Perrin,G. et al)
From A. Glindemans VLTI tutorial
23
Chromatic dependence of spatial coherence
The star g Cass M16 Msun, R6Rsun, D100 pc
GI2T Interferometer, Calern, France - Mourard et
al., 1999
24
6. From the visibility to an image
  • Multiple baselines synthetized pupil
  • The Single Telescope/Antenna MTF (Primary Beam)
  • The Interferometer MTF (Dirty Beam)
  • From Fourier space (visibilities) to image space
    (N -gt N)
  • Filling holes of the MTF deconvolution
    techniques ( cleaning )
  • Restoring a good PSF the densified pupil

25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
Aperture synthesis
1. Object is the Fourier transform of g(B/l) 2.
g(B/l) is measured on a limited support -gt
Frequency cut-off 3. g(B/l) is measured on a
sparse domain -gt irregular PSF (Dirty beam)
B
Image plane (q)
Fourier plane (u,v)
N x N requires N x N
29
(VLTI)
From A. Glindeman, VLTI tutorial
30
An example of Interferometer Point Spread
Function (or Dirty Beam) The PSF of the OHANA
array (7 télescopes, source at zenith)
0.25 mas _at_ l 1 mm
This would be the image of a point source.
Cleaning the image of an extended object can
be done with different techniques of
deconvolution.
31
Etoile Wolf-Rayet WR 104 Peter Tuthill,
Telescope Keck, 2000
32
OHANA interferometer on Mauna Kea
33
7. Types of interferometers
LBT
  • MTF of a real interferometer
  • The Fizeau recombination (optical)
  • The classical Michelson recombination (optical)
  • The Heterodyne recombination (radio)
  • Delay lines, coherencing, cophasing, fringe
    tracking optical radio
  • Field-of-view of an interferometer optical
    radio
  • Polarisation effects
  • The densified pupil Michelson recombination

34
A Fizeau interferometer The Large Binocular
Telescope (2 x 8.4 m), Mt Graham, Arizona
Interferometric field-of-view 1 arcmin (to
compare with VLTI 2 arcsec)
Orion proplyds, HST
23 m
6 arcsec
35
coherencing
cophasing
wavetrain from telescope 1
wavetrain from telescope 2
zero OPD
temporal coherence length ctc
  • Steps with metrology
  • Coherencing find some fringes
  • Cophasing adjust OPD0 from star to fringe
    center through 1 2
  • Fringe tracking maintain OPD0 with delay line
    (compensating for
  • Diurnal, atmospheric or instrument instant
    delays.

36
8. Effects of the Earths atmosphere
  • Overview on atmospheric coherence loss
  • Parameters ro(??? ?o(?? , ?o (??, Lo, lo
  • Adaptive optics, principle
  • - Zernike polynomials description of wavefront
  • - Strehl ratio S
  • Effects on interferometric observables
  • - speckled fringes and visibility degradation
  • - piston noise
  • Closure phase
  • Going to space !

37
./.
38
/...
39
IDEAL
REEL
Gerd Weigelt, Bonn
40
Création F. Lacombe, Meudon
41
Simulations, Daniel Rouan, Meudon
42
Loss of coherence (wavefront aberrations) on a
single telescope effect on fringes
Telescope 1

Telescope 2
(A. Glindeman, VLTI Tutorial)
43
Loss of coherence (differential piston) between
2 telescopes effect on fringes
Atmospheric Piston at 2.2 mm
VLTI-UT1 UT3 - Oct.2001 on Achernar
44
Star 2 is the bright object for piston tracking
Star 1 is the faint object to be measured
Star 2
Star 1
Piston tracking with reference
45
A. Glindeman, VLTI Tutorial
46
Summary of atmospheric effects on interferometric
observations
  • adaptive optics on individual telescopes is
    needed.
  • But Strehl S lt1 leads to visibility amplitude
    loss and visibility noise,
  • limiting accuracy.
  • piston noise between telescopes can not be
    compensated.
  • Limits exposure time, hence restricts observation
    to bright
  • objects adds noise onto visibility amplitude
    measurement.
  • if differential piston is tracked on a
    bright source, long time
  • integration can be achieved to determine V of a
    faint source,
  • but atmosphere imposes a proximity (lt 1 arcmin).
  • differential piston makes absolute phase
    measurement of the
  • complex visibility impossible. Closure phase
    partially solves this.
  • absolute phase of source can yet be measured, if
    a known
  • (e.g. pointlike star, quasar) phase calibrator
    lies close enough.

47
9. Methods
of light recombination
The VLTI Central Laboratory
  • Internal metrology in an interferometer
  • Image plane recombination
  • - dispersed fringes spectral analysis
  • - pupil reconfiguration (Ntélescopes gt 2)
  • Pupil plane recombination
  • - Double Fourier spectral analysis
  • Integrated optics recombiners
  • Dual-beam (dual-feed) operation

48
(No Transcript)
49
10. Signal detection noise sources,
sensitivity
  • From measured to real visibility calibration
  • Expression of the interferometric signal
    amplitude phase
  • Noise sources
  • - signal photon noise (0.3 - 1 mm)
  • - detector read-out noise (1 to 2.5 mm)
  • - background (thermal) noise (2.5 mm -gt radio)
  • - atmospheric noises (piston, scintillation)
    all l
  • Sensitivity accuracy

50
The interferometric signal (optical)
  • Complex visibility V exp(if)

V
Measuring (unwrapped) f needs a reference
Telescope reference
Another nearby object (star)
Same object at different l
51
The interferometric signal (optical)
  • The signal amplitude
  • SIGNAL 1/2 . Intensity . Area . Spectral
    bandwidth .
  • (polarisation) (source)(telescopes)
    (detection)
  • Exposure time . Instrument transmission .
  • (piston) (coatings,
    detector)
  • . Instrument visibility . Source visibility.
    Strehl ratio
  • (coherence losses) (source size)
    (adaptive optics)
  • The noise
  • NOISE Signal Photon noise / Detector noise/
    Thermal noise / Atmospheric noise/.

52
The FLUOR/VINCI principle to control intensity
fluctuations
(I1I2)1/2 V
Interferometric signal Photometric signals

V
(I1) 1/2(I2)1/2
53
11. Astrometry with an interferometer
  • Astrometric observables

54
Interferomeric astrometry
Measure B, dinternal, f, deduce direction s (two
measurements required)
Phase f
Phase reference ?
Write a Comment
User Comments (0)
About PowerShow.com