Title: Differential Geometry of Surfaces
1Differential Geometry of Surfaces
- Jordan Smith
- UC Berkeley
- CS284
2Outline
- Differential Geometry of a Curve
- Differential Geometry of a Surface
- I and II Fundamental Forms
- Change of Coordinates (Tensor Calculus)
- Curvature
- Weingarten Operator
- Bending Energy
3Differential Geometry of a Curve
C(u)
4Differential Geometry of a Curve
Point p on the curve at u0
p
C(u)
pC(u0)
5Differential Geometry of a Curve
Tangent T to the curve at u0
p
Cu
C(u)
6Differential Geometry of a Curve
Normal N and Binormal B to the curve at u0
B
p
Cu
Cuu
C(u)
N
7Differential Geometry of a Curve
Curvature ? at u0 and the radius ? osculating
circle
B
p
Cu
Cuu
C(u)
N
8Differential Geometry of a Curve
Curvature at u0 is the component of -NT along T
C(u0)
C(u1)
T
N(u0)
C(u)
N(u1)
NT
9Computing the Curvature of a Curve
10Computing the Curvature of a Curve
11Computing the Curvature of a Curve
12Computing the Curvature of a Curve
13Computing the Curvature of a Curve
14Computing the Curvature of a Curve
15Outline
- Differential Geometry of a Curve
- Differential Geometry of a Surface
- I and II Fundamental Forms
- Change of Coordinates (Tensor Calculus)
- Curvature
- Weingarten Operator
- Bending Energy
16Differential Geometry of a Surface
S(u,v)
17Differential Geometry of a Surface
Point p on the surface at (u0,v0)
p
S(u,v)
18Differential Geometry of a Surface
Tangent Su in the u direction
p
Su
S(u,v)
19Differential Geometry of a Surface
Tangent Sv in the v direction
Sv
p
Su
S(u,v)
20Differential Geometry of a Surface
Plane of tangents T
Sv
p
T
Su
S(u,v)
21First Fundamental Form IS
22Differential Geometry of a Surface
Normal N
N
Sv
p
T
Su
S(u,v)
23Differential Geometry of a Surface
Normal section
N
Sv
p
T
Su
S(u,v)
24Differential Geometry of a Surface
Curvature
N
Sv
p
T
Su
S(u,v)
25Differential Geometry of a Surface
Curvature
NT
N
Sv
p
T
Su
S(u,v)
26Second Fundamental Form IIS
27Outline
- Differential Geometry of a Curve
- Differential Geometry of a Surface
- I and II Fundamental Forms
- Change of Coordinates (Tensor Calculus)
- Curvature
- Weingarten Operator
- Bending Energy
28Change of Coordinates
Sv
p
Su
Tangent Plane of S
29Change of Coordinates
Sv
b
?
p
Su
a
Construct an Orthonormal Basis
30Change of Coordinates
Sv
b
?
p
Su
a
First Fundamental Form
31Change of Coordinates
Sv
b
T
u
s
t
?
v
p
Su
a
A point T expressed in (u,v) and (s,t)
32Outline
- Differential Geometry of a Curve
- Differential Geometry of a Surface
- I and II Fundamental Forms
- Change of Coordinates (Tensor Calculus)
- Curvature
- Weingarten Operator
- Bending Energy
33Curvature
Sv
?T is a function of direction T
b
?
p
Su
a
34Curvature
Sv
b
How do we analyze the ?T function?
?
p
Su
a
35Curvature
Eigen analysis of IIS
Eigenvalues ?1,?2
Eigenvectors E1,E2
Eigendecompostion of IIS
36Curvature
a
37Outline
- Differential Geometry of a Curve
- Differential Geometry of a Surface
- I and II Fundamental Forms
- Change of Coordinates (Tensor Calculus)
- Curvature
- Weingarten Operator
- Bending Energy
38Weingarten Operator
39Weingarten Operator
40Weingarten Operator
If ?1? ?2
else umbilic (?1 ?2), chose orthogonal directions
41Outline
- Differential Geometry of a Curve
- Differential Geometry of a Surface
- I and II Fundamental Forms
- Change of Coordinates (Tensor Calculus)
- Curvature
- Weingarten Operator
- Bending Energy
42Bending Energy
43Bending Energy
44Conclusion
- Curvature of Curves and Surfaces
- Computing Surface Curvature using the Weingarten
Operator - Minimizing Bending Energy
- Gauss-Bonnet Theorem