Electrochemistry and the Nernst Equation - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

Electrochemistry and the Nernst Equation

Description:

Redox Chemistry/Electrochemistry. Thermodynamics of redox reactions ... Electrochemistry/Electrochemical Cells. Redox reaction produces or uses electrical energy ... – PowerPoint PPT presentation

Number of Views:3537
Avg rating:3.0/5.0
Slides: 42
Provided by: CabAd
Category:

less

Transcript and Presenter's Notes

Title: Electrochemistry and the Nernst Equation


1
Electrochemistry and the Nernst Equation
  • Experiment 14

2
14 Electrochemistry and the Nernst Equation
  • Goals
  • To determine reduction potentials of metals
  • To measure the effect of concentration on
    reduction potential
  • To prepare a Nernst plot to find solubility of
    silver halides (AgX)
  • Method
  • Use an electrochemical cell and voltmeter

3
Redox Chemistry/Electrochemistry
  • Thermodynamics of redox reactions
  • Chemical / electrical work interchange
  • Involves transfer of electrons or electron
    density
  • Oxidation
  • Loss of electrons
  • Reduction
  • Gain of electrons

4
(No Transcript)
5
Redox reactions and spontaneity
  • Spontaneity is determined by thermodynamics
  • Ex. Cu/Cu2 // Zn/Zn2 system
  • What will be oxidized (lose e-)? Cu or Zn
  • What will be reduced (gain e-)? Cu2 or Zn2
  • Will e- flow from Zn to Cu2 or from Cu to Zn2?
  • What will the energy change be?
  • Current
  • Flow of e-
  • Systems attempt to attain equilibrium
  • (minimum energy state)

6
Zn (s) Cu2(aq) ? Cu (s) Zn2(aq)
2e-
7
Electrochemistry/Electrochemical Cells
  • Redox reaction produces or uses electrical energy
  • Voltaic (galvanic) cell
  • spontaneous reaction generates electrical energy
    (battery)
  • Electrolytic cell
  • absorbs energy from an electrical source to
    drive nonspontaneous reaction (recharge)

8
Cell Components
  • Electrodes
  • conduct electricity between cell and surroundings
  • Anode oxidation site AO, an ox
  • Cathode reduction site CR, red cat
  • Electrolyte
  • ion mixture involved in reaction or carrying
    charge
  • Salt bridge
  • completes circuit (provides charge balance)

9
Experimental Set-up
  • Electrochemical cell
  • Separated ½ reactions
  • (ox and red)
  • Driving force for
  • electron transfer is
  • measurable
  • What is 1.10?

10
Electrochemical Cell Set-up
voltmeter
Mred(s)
Mox(s)
Salt Bridge (KNO3)
My
Mx

Oxidizing agent
Reducing agent


Cathode Ions are reduced My(aq) y e- ? M(s)
Anode Electrode is oxidized M(s) ? Mx(aq) x e-
11
Example Set-up
1.10V
Cu(s)
Zn(s)
Salt Bridge (KNO3)
Cu2
Zn2

Oxidizing agent
Reducing agent


Cathode Ions are reduced Cu2(aq) 2e- ? Cu(s)
Anode Electrode is oxidized Zn(s) ? Zn2(aq) 2e-
12
Zn (s) Cu2(aq) ? Cu (s) Zn2(aq)
  • Zn gives up e- to Cu spontaneously
  • Zn pushes harder on e-
  • e- on Zn greater potential energy
  • greater electrical potential
  • 1.10 V is a measure of this

13
Electrochemical potential measured voltage
  • Voltage
  • difference in energy of the e- on the metals or
  • relative difference in metals abilities to give
    e-
  • different metals ? different e- energy
  • ? different push on e-
  • Electromotive force (EMF cell potential), Ecell
  • Driving force on electrons
  • Measured voltage potential difference
  • Higher Ecell larger drive

14
Thermoelectric bridge work and e- flow
  • DG0 free energy change (available work)
  • E0 standard cell potential
  • n number of moles of e- transferred
  • F Faradays constant

15
Energy, E0, and Spontaneity
  • Cell potential Free Energy
    Spontaneity
  • Positive E0cell DG0 lt 0 Spontaneous
  • Negative E0cell DG0 gt 0 Not
  • Zero E0cell DG0 0 Equilibrium
  • DG0 free energy of change
  • amount of available (electrical) work

16
Standard Reduction Potentials, E0
  • E0cell cell potential under standard conditions
  • (reference tables)
  • elements in standard states s, l, g
  • solutions 1 M
  • gases 1 atm
  • Relative to standard hydrogen electrode, SHE
  • 2H(aq) 2 e- ? H2(g) E0cell 0.00 V
  • Overall E0cell combine E0s for half-reactions

17
Example E0 values
  • Reduction reaction E0
  • Mg2 2e- ? Mg -2.30 V
  • Zn2 2e- ? Zn -0.76 V
  • Ni2 2e- ? Ni -0.23 V
  • 2H2 2e- ? H2 0.00 V
  • Cu2 2e-? ? Cu 0.34 V
  • Ag e-? ? Ag 0.80 V
  • Au3 3e-? ? Au 1.50 V
  • ? More positive E0 greater reduction
    potential
  • ?The push on e- relative to H2/2H

18
E0 values
  • More positive
  • Stronger oxidizing agent
  • Easier to reduce
  • More readily accepts e-
  • More negative
  • Stronger reducing agent
  • More easily oxidized
  • More readily gives e-
  • In a spontaneous reaction
  • Stronger R.A. O.A. ? Weaker R.A. O.A.

19
Calculating E0cell
  • Reaction Zn (s) Cu2(aq) ? Cu (s)
    Zn2(aq)
  • red. Zn(s) ? Zn2(aq) 2 e- E0 0.76 V
  • ox. Cu2(aq) 2 e- ? Cu(s) E0 0.34 V
  • Zn (s) Cu2(aq)? Cu(s) Zn2(aq) E0 1.10 V
  • Assumes 1 M Cu2 and Zn2 solutions under
    standard conditions

20
Connection to work DG0, E0, and K
From thermodynamics
From electrochemistry
So
So
At equilibrium DG0 0 and Keq Q
n moles of e- transferred
21
Nernst Equation
Nonstandard conditions
So
Q, reaction quotient
Cell potential298K
22
Summary of Key Equations
Standard Conditions and at Equilibrium
Non-standard conditions298K
  • Remember Ecell is proportional to ?DG

23
Concentration Dependence
  • Electrical potentials depend on
  • type of metal
  • solution concentration
  • For Zn (s) Cu2(aq) ? Cu (s) Zn2(aq)

24
Example
  • Gold will plate onto silver (not vice versa)
    why?

Au3(aq)
Ag(aq)
Ag(aq)
e-
Au(s)
Au(s)
Ag(s)
3Ag Au3 ? 3Ag Au
No reaction
25
Example Au plating on Ag
Spontaneous reaction 3Ag Au3 ? 3Ag Au
Given (tables) Ag3 e- ? Ag E0 0.80
V Au3 3e- ? ? Au E0 1.50 V
If Au3 Ag 1 M at 298K
26
Example Au plating on Ag
Spontaneous reaction 3Ag Au3 ? 3Ag Au
If E0 0.70 V Au3 Ag 0.1
M at 298K
27
Example Au plating on Ag
Spontaneous reaction 3Ag Au3 ? 3Ag Au
If ½ Au3 is consumed Au3 ½ (0.10M)
0.05M Ag 0.10M3(0.05M) 0.25 M
28
Experimental Parts and Key Ecell Equation
Part 1
Parts 2 and 3
29
Experimental Overview
  • 1. Dependence of potential on metal type
  • Metal1 ? Metal2
  • c1 c2
  • Use 0.1 M solutions and electrodes of different
    metals
  • Measure Ecell for each ( E0cell)
  • Compare experimental vs. literature values

0
30
Overview
  • 2. Dependence of potential on concentration
  • Metal1 Metal2
  • c1 ? c2
  • Use 0.1 M solution with 1?10-5 to 1?10-1 M
    solutions
  • Measure Ecell for each
  • Plot Ecell vs. log(cdil/cconc)
  • Compare slope to Nernst equation

0
31
Overview
  • 3. Ksp Determination
  • AgX(s) Ag(aq) X-(aq) Ksp AgX-
  • Met1 Met2
  • c1 ? c2
  • Use 0.1 M Ag with satd AgX (0.1M Ag 0.2M KX)
  • Measure Ecell
  • Part 2 plot gives
  • So

32
Part 1 Notes Ecell Dependence on type of metal
  • Measure Ecell for metal pairs
  • 0.1 M Solutions (eliminates conc. dependence)
  • TA will demonstrate cell set-up
  • Each cell vial 2/3 full of solution
  • liquids MUST be at equal levels
  • Salt bridge filter paper soaked in 1.0 M KNO3
  • dont let tweezers touch solutions in vials
  • Voltmeter Clip leads to metal strips
    (electrodes)
  • Insert into solutions

33
Part 1 Notes Ecell Dependence on type of metal
  • Measure cell voltage, Ecell
  • Measure 2 or 3 metal relative to Cu
  • Measure 2 or 3 metals relative to each other
  • Calculate E0cell values
  • Compare to literature

0
34
Electrochemical Cell Set-up
0.47
Cu(s)
Pb(s)
Salt Bridge (KNO3)
Cu2
Pb2



Cathode
Anode
Spontaneous when Pb is oxidized and Cu2 is
reduced
35
Part 1 Examples
  • Copper and Lead
  • Pb ? Pb2 ?? Cu2 ? Cu
  • oxidation Pb metal/solution
  • reduction Cu metal/solution
  • Reduction potentials (table)
  • Pb2(aq) 2 e- ? Pb(s) E0 0.13 V
  • Cu2(aq) 2 e- ? Cu(s) E0 0.34 V
  • For spontaneous reaction, E0 gt 0 so calculated E0
    is
  • Pb (s) Cu2(aq)? Cu(s) Pb2(aq) E0 0.47 V

36
Example Part 1 Data
  • Measured vs.
  • Calculated Ecell
  • Ecell
  • Ecathode (? Eanode)

37
Part 2 Notes Ecell dependence on concentration
  • Cells same metal/metal ion solution
  • TA will demonstrate cell set-up
  • Measure Ecell (E0 0)
  • Concentrations 0.1 to 1?10-5 vs. 0.1 M
  • Plot Ecell vs. log(cdil/cconc)
  • Compare slope to Nernst equation (-2.303RT/nF)
  • Ag(s) Ag(aq, conc) ? Ag(s) Ag(aq, dil)

38
Example Part 2 Data
  • Plot Ecell msd vs. log(A/B)

Theoretical Slope ?2.303RT/nF
39
Part 3 Notes Silver Halides Ksp
  • cell 1 0.1 M Ag?Ag electrode
  • cell 2 saturated AgX solution (KCl/AgNO3)
  • Measure Ecell
  • Determine Agdilute
  • Find Ksp AgX-
  • X- unchanged
  • Ag Ecell /Part 2
  • Find DG0 -RTlnKsp

0.2M
40
Electrochemical Ksp and DG0 Determination
  • Experimental voltages good lt5 error
  • Experimental Ksp good high 20 error

41
Report
  • Abstract
  • Sample calculations including
  • Reduction potentials for metals
  • E0cell for cells without Cu
  • log (Agdilute/Agconc)
  • Agdilute, Ksp, DG0
  • Results
  • Ecell, msrd for all cells
  • Reduction potentials for metals
  • E0cell for metals
  • concentrations, Emeasured, slopes, graph
  • Ecell, msrd, Agdilute, Ksp, DG0
  • Discussion/review questions
Write a Comment
User Comments (0)
About PowerShow.com