Title: Shock-Wave Simulations Using Molecular Dynamics
1Shock-Wave Simulations Using Molecular Dynamics
Matthew R. Farrow Department of Physics,
University of York, United Kingdom
- CCP5 and Marie Curie Actions Methods in
Molecular Simulation Summer School 2006
1
2Outline
- Introduction
- What is it I am doing?
- Why am I doing it?
- How will I do it?
- What is a Shock-wave?
- Recent work
- Shock-wave in Argon
- Discussion and conclusions
2
3What am I doing?!
3
4Shock-wave research
- My research is to use shock-waves in solids to
investigate material properties, using molecular
dynamics (MD) simulations - Aim to probe the Equations of State to enhance
understanding of material properties - Perhaps find new applications?
4
5Why shock-wave research?
- Allows us to go places inaccessible to the
current level of experiment - Astrophysics
- Planetary core modelling
- High temperature physics
- Explosives modelling!
5
6How am I supposed to do THAT?!
6
7Classical or Ab-initio MD?
- Classical MD uses empirical potentials and so
is computationally cheap - Classical MD simulations should scale linearly
with number of processors for both speed of
computation and number of atoms - Shock waves in systems with 109 atoms have been
simulated1 using Classical MD. - Ab-initio MD calculations are limited in the
number of atoms that can be simulated due to the
extreme computational cost of calculating the
many-body interactions - Ab-initio is more accurate!
1 K.Kadau,T.C.Germann,P.S.Lomdahl,B.L.Holian,Sci
ence,296,1681 (2002)
7
8What is a shock-wave?
8
9Shock-waves
- Possible to have the propagation of the
pertubation move faster than the acoustic
velocity of discontinuous pressure waves2 - Shock-waves through solids, liquids and gases
- Navier-Stokes Equations
- Rankine-Hugoniot equations
2 G.G.Stokes, M. Poisson (1800s)
9
10Shock-waves and Equations of State (EOS)
- The Equations of State (EOS) gives the all the
properties of the material in terms of Pressure,
P, Volume, V and Energy, E (or Temperature, T)
- For example, the ideal gas EOS PV RT
- However, the full EOS for most materials are very
difficult to determine. - Hugoniot is a line on the EOS
- All possible states after a material has been
shocked
Hugoniot Curve Exemplar3
3 Equations of State Article in Discovery,
the AWE Science and Technology Journal (1989)
10
11Recent Work with Argon
11
12Shock-waves in Argon
- For Argon we can use the well known Lennard-Jones
potential5
5 M.P. Allen and D.J Tildesley, Computer
Simulation of Liquids, Oxford University Press
(1987)
12
13Shock-wave movies
No shockwave
13
14Shock-wave movies
5X Velocity of Sound
14
15Shock-wave movies
10X Velocity of Sound
15
16Discussion and Conclusions
- Shock-waves are characterised by their Hugoniot
- Line on the Equations of State surface
- Have plenty of materials to choose from
- Different shock-wave velocities seen to produce
different responses
16
17Future Work
- To model a shock-wave through
- Metals (e.g. Aluminium)
- Insulators
- Much bigger system of atoms (10,000)
- NB one cubic cm 1023 atoms.
- Create the EOS and predictions!
17
18Thanks for listening!Any questions?
18