Omega%20Network - PowerPoint PPT Presentation

About This Presentation
Title:

Omega%20Network

Description:

The omega MIN uses the 'perfect shuffle' 2. Perfect Shuffle. The interconnections between stages are defined by the logical 'rotate left' of ... – PowerPoint PPT presentation

Number of Views:628
Avg rating:3.0/5.0
Slides: 38
Provided by: sue8226
Category:

less

Transcript and Presenter's Notes

Title: Omega%20Network


1
Omega Network
  • The omega network is another example of a banyan
    multistage interconnection network that can be
    used as a switch fabric
  • The omega differs from the delta network in the
    pattern of interconnections between the stages
  • The omega MIN uses the perfect shuffle

2
Perfect Shuffle
  • The interconnections between stages are defined
    by the logical rotate left of the bits used in
    the port ids
  • Example 000 ---gt 000 ---gt 000 ---gt 000
  • Example 001 ---gt 010 ---gt 100 ---gt 001
  • Example 011 ---gt 110 ---gt 101 ---gt 011
  • Example 111 ---gt 111 ---gt 111 ---gt 111

3
8 x 8 OMEGA NETWORK
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
4
Self Routing
  • Omega network has self-routing property
  • The path for a cell to take to reach its
    destination can be determined directly from its
    routing tag (i.e., destination port id)
  • Stage k of the MIN looks at bit k of the tag
  • If bit k is 0, then send cell out upper port
  • If bit k is 1, then send cell out lower port
  • Works for every possible input port (really!)

5
0
0
1
1
4
2
2
3
3
4
4
5
5
6
6
7
7
6
0
0
1
1
2
2
4
3
3
4
4
5
5
6
6
7
7
7
0
0
1
1
2
2
3
4
3
4
4
5
5
6
6
7
7
8
0
0
1
1
2
2
3
3
4
4
5
5
6
4
6
7
7
9
0
0
1
1
2
2
3
3
4
4
5
5
6
4
6
7
7
10
0
0
1
1
2
2
3
3
4
4
4
5
5
6
6
7
7
11
0
0
1
1
2
2
3
3
4
4
4
5
5
6
6
7
7
12
Path Contention
  • The omega network has the problems as the delta
    network with output port contention and path
    contention
  • Again, the result in a bufferless switch fabric
    is cell loss (one cell wins, one loses)
  • Path contention and output port contention can
    seriously degrade the achievable throughput of
    the switch

13
Path Contention
0
0
1
1
4
2
2
3
3
5
4
4
5
5
6
6
7
7
14
Path Contention
0
0
1
1
2
2
4
3
3
4
4
5
5
6
5
6
7
7
15
Path Contention
0
0
1
1
2
2
3
4
3
4
4
5
5
6
6
7
5
7
16
Path Contention
0
0
1
1
2
2
3
3
4
4
5
5
6
4
6
7
5
7
17
Path Contention
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
18
Path Contention
0
0
1
1
2
2
3
3
4
4
5
5
6
5
6
7
7
19
Path Contention
0
0
1
1
2
2
3
3
4
4
5
5
5
6
6
7
7
20
Path Contention
0
0
1
1
2
2
3
3
4
4
5
5
5
6
6
7
7
21
Performance Degradation
0
0
1
1
4
2
2
3
6
3
4
4
1
7
5
5
6
0
6
7
3
7
22
Performance Degradation
0
0
1
1
1
2
2
4
3
7
3
4
4
0
5
5
6
6
6
7
3
7
23
Performance Degradation
0
0
1
1
1
2
2
3
3
4
0
4
5
5
6
3
6
7
6
7
24
Performance Degradation
0
0
1
1
1
2
2
3
7
3
4
0
4
5
5
6
3
6
7
6
7
25
Performance Degradation
0
0
1
1
1
0
2
2
3
3
4
4
3
5
5
6
7
6
7
6
7
26
Performance Degradation
0
0
1
1
2
2
3
3
4
4
3
5
5
6
6
7
7
27
Performance Degradation
0
0
0
1
1
2
2
3
3
4
4
3
5
5
6
6
7
6
7
28
Performance Degradation
0
0
0
1
1
2
2
3
3
3
4
4
5
5
6
6
7
6
7
29
Performance Degradation
0
0
0
1
1
2
2
3
3
3
4
4
5
5
6
6
6
7
7
30
A Solution Batcher Sorter
  • One solution to the contention problem is to sort
    the cells into monotonically increasing order
    based on desired destination port
  • Done using a bitonic sorter called a Batcher
  • Places the M cells into gap-free increasing
    sequence on the first M input ports
  • Eliminates duplicate destinations

31
Batcher-Banyan Example
0
0
0
1
1
1
2
2
3
3
4
3
4
6
4
7
5
5
6
6
7
7
32
Batcher-Banyan Example
0
0
0
1
1
6
2
2
1
3
7
3
4
3
4
5
5
6
4
6
7
7
33
Batcher-Banyan Example
0
0
0
1
1
6
2
2
1
3
7
3
4
3
4
5
5
6
6
7
4
7
34
Batcher-Banyan Example
0
0
0
1
1
3
2
2
6
3
3
4
1
4
5
5
6
7
6
7
4
7
35
Batcher-Banyan Example
0
0
0
1
1
3
2
2
3
6
3
4
1
4
5
5
6
4
6
7
7
7
36
Batcher-Banyan Example
0
0
0
1
1
1
2
2
3
3
3
4
4
4
5
5
6
6
6
7
7
7
37
Batcher-Banyan Example
0
0
0
1
1
1
2
2
3
3
3
4
4
4
5
5
6
6
6
7
7
7
Write a Comment
User Comments (0)
About PowerShow.com