Title: Visualizing the Behavior of Higher Dimensional Dynamical Systems
1Visualizing the Behavior of Higher Dimensional
Dynamical Systems
- Rainer Wegenkittl, Helwig Loffelmann, and Eduard
Groller - IEEE Visualization 97
- http//www.cg.tuwien.ac.at/research/
vis/dynsys/ndim/ndim_crc.pdf - presented by John T. Bell
- CS 526 - Spring 2004
2Motivation
- A lot of very interesting ( scientifically )
phenomenon are inherently high-dimensional.
This is increasing as simulations increase the
number of properties calculated at each point. - Dynamic systems in particular employ continuous
time derivatives at each point in n-space. - However humans generally view the world in 3-D.
- So how do we display m-D data defined in n-D
space in a cognitively effective manner?
3Previous Methods of Visualizing Multi-Dimensional
Data
- Attribute Mapping ( e.g. Color Coding )
- Geometric Coding ( e.g. Glyphs, Icons, Chernoff
Faces ) - Sonification
- Reduction of Dimension - Focusing or Linking
- Parallel Coordinates
4Attribute Mapping ( e.g. Color ) I
5Attribute Mapping ( e.g. Color ) II
6Geometric Coding - Glyphs I
- Sphere Boids
- Arrow Dart Boids
- Flow Ribbons
- Test Particles
- Ellipsoid Boids for Tensor Fields
- Probes for Fluid Flow Visualization
7Geometric Coding - Glyphs II
- G. David Kerlick, Moving Iconic Objects in
Scientific Visualization, IEEE 1990. - Dart Boids and Flow Ribbons
8Geometric Coding - Glyphs III
- Willem C. de Leeuw and Wijk, A Probe for Local
Field Visualization
9Geometric Coding - Color Icons
- Haim Levkowitz, Color Icons Merging Color and
Texture Perception for Integrated Visualization
of Multiple Parameters, IEEE 1991.
10Geometric Coding - Chernoff Faces
- Herman Chernoff, as reproduced in Edward Tufte,
The Visual Display of Quantitative Information,
p. 142.
11Sonification ( Color Icons )
12Reduction of Dimensioning I - Focusing
- Focusing on a smaller dimensional view of the
original data - Subsetting
- Panning
- Zooming
- Slicing
- Projection
- Specialty Fisheye views, and rooms
13Reduction of Dimensioning II - Linking
- Collections of focused subsets, linked.
- E.g. Tuftes Small Multiples
14Parallel Coordinates
- Alfred Inselberg Bernard Dimsdale, Parallel
Coordinates A Tool for Visualizing
Multi-Dimensional Geometry
15Properties of High D Dynamic Systems
Visualizations
- Many phenomena described by systems of N
differential equations in N state variables. - gt N-dimensional domain with N-dimensional
slope vector defined continuously over domain. - Visualization needs to account for the flow the
topology, not just the independent data values. - Approach 1 Show derivatives, shear, curvature,
vorticity, etc. at each point using icons. - Approach 2 Flow trajectories.
16Three New Approaches to High-D Visualization
- Extruded Parallel Coordinates - Employ the Z
direction, so lines become surfaces. - Linking With Wings - Plot trajectories in 3-D,
based on 3 of N variables Then add coordinate
axes along trajectories for more D. - 3-D Parallel Coordinates - Instead of linear
axes, use 2-D planes instead Either coincident,
parallel, or otherwise arranged.
17Extruded Parallel Coordinates
18Linking With Wings
193-D Parallel Coordinates - I
203-D Parallel Coordinates - II
21Four-Dimensional Hedgehog
22References - I
- Rainer Wegenkittl, Helwig Loffelmann, and Eduard
Groller, Visualizing the Behavior of Higher
Dimensional Dynamical Systems, Proceedings of
the 8th IEEE Visualization 97 Conference,
http//www.cg.tuwien.ac.at/research/
vis/dynsys/ndim/ndim_crc.pdf - Scientific Visualization Web Site at Technische
Universitat Wien, http//www.cg.tuwien.ac.at/resea
rch/vis-dyn-syst/ - G. D. Kerlick, Moving Iconic Objects in
Scientific Visualization, IEEE Visualiztion 90
Proceedings, pp. 124-129, 1990. - W.C. de Leeuw, J.J. van Wijk, A Probe for Local
Flow Field Visualization, IEEE Visualization 93
Proceedings, pp. 39-45, 1993. - A. Inselberg, B. Dimsdale, Parallel Coordinates
A Tool for Visualizing Multidimensional
Geometry, Visualization 90 Proceedings, pp.
361-378, 1990. - H. Levkowitz, Color Icons Merging Color and
Texture Perception for Integrated Visualization
of Multiple Parameters, IEEE Visualization 91
Proceedings, pp. 164-170, 1991.
23References - II
- Edward Tufte, The Visual Display of Quantitative
Information, Graphics Press, Cheshire, CT, 1983 - K.W. Brodie et. al. ( ed.s ) Scientific
Visualization, Techniques and Applications. - ( H. Chernoff, The Use of Faces to Represent
Points in K-Dimensional Space Graphically,
Journal of the American Statistical Association,
68, pp. 361-368, 1993. - As reported in Tufte
above. ) - T. Mihalisin, J. Timlin, J. Schwegler,
Visualization and Analysis of Multi-variate
Data A Technique for all Fields, EIII
Visualization 91 Proceedigns, pp. 171-178, 1991 - Delft Technical University Scientific
Visualization Web Site, http//visualization.tudel
ft.nl/index.html - Daniel Harms, Extending the McCabe-Thiele Method
to Multicomponent Distillation Using Virtual
Reality, M.S. Project Report, University of
Illinois Chicago, 2001.
24How Can We ExtendMcCabe-Thiele ?
?
25First Consider a Single Stage
26Then Stack Multiple Stages
27Augment With Color and Detail
28Close Ups of Feedand Top Stages
29Frames Add T, P, X, Y Info
30McCabe-Thiele SpacingShows (In)Efficient Stages
31Two Related Towers ...
32 Can Now Be Combined
33Of Course Too Much DataCan Still Be Overwhelming