Title: Quantum%20Phase%20Transitions
1Quantum Phase Transitions Subir Sachdev Talks
online at http//sachdev.physics.harvard.edu
2What is a phase transition ?
A change in the collective properties of a
macroscopic number of atoms
3What is a quantum phase transition ?
Change in the nature of entanglement in a
macroscopic quantum system.
4Entanglement
Hydrogen atom
Hydrogen molecule
_
Superposition of two electron states leads to
non-local correlations between spins
5Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
6Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
7Chinese Terracotta warriors (479-221 BC)
M. Jaime et al., Phys. Rev. Lett. 93, 087203
(2004)
8Han Purple BaCuSi2O6
Each Cu2 has a single free electron spin
M. Jaime et al., Phys. Rev. Lett. 93, 087203
(2004)
9Weak magnetic field
Han Purple BaCuSi2O6
M. Jaime et al., Phys. Rev. Lett. 93, 087203
(2004)
10Strong magnetic field
Han Purple BaCuSi2O6
Magnetic field, H
M. Jaime et al., Phys. Rev. Lett. 93, 087203
(2004)
11Han Purple BaCuSi2O6
SPM
XY-AFM
QPM
M. Jaime et al., Phys. Rev. Lett. 93, 087203
(2004)
12Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
13Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
14Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
15Han Purple BaCuSi2O6
Each Cu2 has a single free electron spin.
Vary the ratio J/J
M. Jaime et al., Phys. Rev. Lett. 93, 087203
(2004)
16Spin gap
Neel
J/J
Vary the ratio J/J
17Spin gap
Neel
J/J
Vary the ratio J/J
18Spin wave
J/J
Vary the ratio J/J
19Spin gap
Neel
J/J
Vary the ratio J/J
20Spin gap
Neel
Triplet magnon
J/J
Vary the ratio J/J
21Spin gap
Neel
J/J
Vary the ratio J/J
22Spin gap
Neel
J/J
Vary the ratio J/J
S. Chakravarty, B.I. Halperin, and D.R. Nelson,
Phys. Rev. B 39, 2344 (1989)
23Quantum Criticality
J/J
Vary the ratio J/J
S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411
(1992).
24Quantum Criticality
Thermal excitations interact via a universal S
matrix.
Spin gap
Neel
J/J
Vary the ratio J/J
S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411
(1992).
25Decoherence time
Spin gap
Neel
J/J
Vary the ratio J/J
S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411
(1992).
26Quantum critical transport
Spin diffusion constant
where Q is a universal number
Spin gap
Neel
J/J
Vary the ratio J/J
A.V. Chubukov, S. Sachdev and J. Ye, Phys. Rev. B
49, 11919 (1994).
27Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
28Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
29Trap for ultracold 87Rb atoms
30M. Greiner, O. Mandel, T. Esslinger, T. W.
Hänsch, and I. Bloch, Nature 415, 39 (2002).
31The Bose-Einstein condensate in a periodic
potential
Lowest energy state for many atoms
Large fluctuations in number of atoms in each
potential well superfluidity (atoms can flow
without dissipation)
32Breaking up the Bose-Einstein condensate
Lowest energy state for many atoms
By tuning repulsive interactions between the
atoms, states with multiple atoms in a potential
well can be suppressed. The lowest energy state
is then a Mott insulator it has negligible
number fluctuations, and atoms cannot flow
33Velocity distribution of 87Rb atoms
Superfliud
M. Greiner, O. Mandel, T. Esslinger, T. W.
Hänsch, and I. Bloch, Nature 415, 39 (2002).
34Velocity distribution of 87Rb atoms
Insulator
M. Greiner, O. Mandel, T. Esslinger, T. W.
Hänsch, and I. Bloch, Nature 415, 39 (2002).
35Non-zero temperature phase diagram
Insulator
Superfluid
Depth of periodic potential
36Non-zero temperature phase diagram
Dynamics of the classical Gross-Pitaevski equation
Insulator
Superfluid
Depth of periodic potential
37Non-zero temperature phase diagram
Dilute Boltzmann gas of particle and holes
Insulator
Superfluid
Depth of periodic potential
38Non-zero temperature phase diagram
No wave or quasiparticle description
Insulator
Superfluid
Depth of periodic potential
39Resistivity of Bi films
D. B. Haviland, Y. Liu, and A. M. Goldman, Phys.
Rev. Lett. 62, 2180 (1989)
M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)
40Non-zero temperature phase diagram
Insulator
Superfluid
Depth of periodic potential
41Non-zero temperature phase diagram
Collisionless-to hydrodynamic crossover of a
conformal field theory (CFT)
Insulator
Superfluid
Depth of periodic potential
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
42Non-zero temperature phase diagram
Needed Cold atom experiments in this regime
Collisionless-to hydrodynamic crossover of a
conformal field theory (CFT)
Insulator
Superfluid
Depth of periodic potential
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
43Hydrodynamics of a conformal field theory (CFT)
Maldacenas AdS/CFT correspondence relates the
hydrodynamics of CFTs to the quantum gravity
theory of the horizon of a black hole in Anti-de
Sitter space.
44Hydrodynamics of a conformal field theory (CFT)
Maldacenas AdS/CFT correspondence relates the
hydrodynamics of CFTs to the quantum gravity
theory of the horizon of a black hole in Anti-de
Sitter space.
Holographic representation of black hole physics
in a 21 dimensional CFT at a temperature equal
to the Hawking temperature of the black hole.
31 dimensional AdS space
Black hole
45Hydrodynamics of a conformal field theory (CFT)
Hydrodynamics of a CFT
Waves of gauge fields in a curved background
46Hydrodynamics of a conformal field theory (CFT)
The scattering cross-section of the thermal
excitations is universal and so transport
co-efficients are universally determined by kBT
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
47Hydrodynamics of a conformal field theory (CFT)
For the (unique) CFT with a SU(N) gauge field and
16 supercharges, we know the exact diffusion
constant associated with a global SO(8) symmetry
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son,
hep-th/0701036
48Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
49Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
50Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
51Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
52Valence bonds in benzene
Resonance in benzene leads to a symmetric
configuration of valence bonds (F. Kekulé, L.
Pauling)
53Valence bonds in benzene
Resonance in benzene leads to a symmetric
configuration of valence bonds (F. Kekulé, L.
Pauling)
54Valence bonds in benzene
Resonance in benzene leads to a symmetric
configuration of valence bonds (F. Kekulé, L.
Pauling)
55Temperature-doping phase diagram of the cuprate
superconductors
56Antiferromagnetic (Neel) order in the insulator
57Induce formation of valence bonds by e.g.
ring-exchange interactions
A. W. Sandvik, cond-mat/0611343
58As in H2 and benzene, each electron wants to pair
up with another electron and form a valence bond
59 60 61 62 63Entangled liquid of valence bonds (Resonating
valence bonds RVB)
P. Fazekas and P.W. Anderson, Phil Mag 30, 23
(1974).
64Valence bond solid (VBS)
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). R. Moessner
and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).
65Valence bond solid (VBS)
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). R. Moessner
and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).
66Valence bond solid (VBS) More
possibilities for entanglement with nearby states
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). R. Moessner
and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).
67Valence bond solid (VBS) More
possibilities for entanglement with nearby states
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). R. Moessner
and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).
68Valence bond solid (VBS) More
possibilities for entanglement with nearby states
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). R. Moessner
and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).
69Valence bond solid (VBS) More
possibilities for entanglement with nearby states
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). R. Moessner
and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).
70Valence bond solid (VBS) More
possibilities for entanglement with nearby states
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). R. Moessner
and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).
71Valence bond solid (VBS) More
possibilities for entanglement with nearby states
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). R. Moessner
and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).
72Valence bond solid (VBS) More
possibilities for entanglement with nearby states
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989). R. Moessner
and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).
73Excitations of the RVB liquid
74Excitations of the RVB liquid
75Excitations of the RVB liquid
76Excitations of the RVB liquid
77Excitations of the RVB liquid
Electron fractionalization
Excitations carry spin S1/2 but no charge
78Excitations of the VBS
79Excitations of the VBS
80Excitations of the VBS
81Excitations of the VBS
82Excitations of the VBS
Free spins are unable to move apart no
fractionalization, but confinement
83Phase diagram of square lattice antiferromagnet
A. W. Sandvik, cond-mat/0611343
84Phase diagram of square lattice antiferromagnet
VBS order
Neel order
K/J
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev
and M.P.A. Fisher, Science 303, 1490 (2004).
85Phase diagram of square lattice antiferromagnet
VBS order
Neel order
K/J
RVB physics appears at the quantum critical point
which has fractionalized excitations deconfined
criticality
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev
and M.P.A. Fisher, Science 303, 1490 (2004).
86Phase diagram of square lattice antiferromagnet
VBS order
Neel order
K/J
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev
and M.P.A. Fisher, Science 303, 1490 (2004).
87 Quantum criticality of fractionalized
excitations
K/J
88Phases of nuclear matter
89Observation of a valence bond solid (VBS)
XPd(dmit)22
M. Tamura et al., J. Phys. Soc. Jpn. 75, 093701
(2006)
90Observation of a valence bond solid (VBS)
RVB (?)
Pressure-temperature phase diagram of
ETMe3PPd(dmit)22
Y. Shimizu et al. cond-mat/0612545
91Temperature-doping phase diagram of the cuprate
superconductors
92Temperature-doping phase diagram of the cuprate
superconductors
VBS order
Neel order
K/J
Deconfined quantum critical point (DQCP)
93Temperature-doping phase diagram of the cuprate
superconductors
Supercon-ducting algebraic holon liquid
Neel order d-wave supercon-ductivity
Neel order
DQCP
d-wave supercon-ductivity
Hole concentration
R.K. Kaul, Y.-B. Kim, S. Sachdev and T. Senthil,
to appear
94Temperature-doping phase diagram of the cuprate
superconductors
Quantum critical phases with enhanced VBS
correlations
Supercon-ducting algebraic holon liquid
Neel order d-wave supercon-ductivity
Neel order
DQCP
d-wave supercon-ductivity
Hole concentration
R.K. Kaul, Y.-B. Kim, S. Sachdev and T. Senthil,
to appear
95Temperature-doping phase diagram of the cuprate
superconductors
STM in zero field
96Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
97Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
98Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
99Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
100Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
101Glassy Valence Bond Solid (VBS)
Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
102Temperature-doping phase diagram of the cuprate
superconductors
Glassy Valence Bond Solid (VBS)
103Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
104Outline
Quantum phase transitions
- Spin ordering in Han purple
- Entanglement at the critical point physical
consequences at non-zero temperatures (a)
Double-layer antiferromagnet (b)
Superfluid-insulator transition (c)
Hydrodynamics via mapping to quantum theory of
black holes. - Entanglement of valence bonds
- Conclusions
105Conclusions
- Studies of new materials and trapped ultracold
atoms are yielding new quantum phases, with novel
forms of quantum entanglement. - Some materials are of technological importance
e.g. high temperature superconductors. - Real-world studies on the entanglement of large
numbers of qubits insights may be important for
quantum cryptography and quantum computing. - Tabletop laboratories for the entire universe
quantum mechanics of black holes, quark-gluon
plasma, neutrons stars, and big-bang physics.