Title: Electrochemical%20Generation%20of%20Nano-structures%20at%20the%20Liquid-Liquid%20Interface
1Electrochemical Generation of Nano-structures at
the Liquid-Liquid Interface
- Robert A.W. Dryfe
- School of Chemistry,
- Univ. of Manchester (U.K.)
- robert.dryfe_at_manchester.ac.uk
2Liquid/Liquid Interfaces in catalysis
- Widely used bi-phasic system, allows for ease of
separation of catalysis from reactant mixture. - Electrochemical investigations of phase-transfer
catalysis (Schiffrin 1988 1, Girault 1994 2) - Water does not have to be one of the phases
Fluorous biphase catalysis (Horvath 1994) 3 - Stable room-temperature ionic liquids
- (Ballantyne 2008 4)
H3DA TPBF3 ethylmethy-limidazolium ethylsulfate
(EMIM EtSO4) interface
3 Liquid/Liquid Interfaces electro-catalyst
generation
- Reduction of solution phase Mn
- Heterogeneous ET (surface of electronic
conductor) - Homogeneous ET (nanoparticle preparation)
- Heterogeneous ET (aq/organic interface)
with/without potential control
4 Liquid/Liquid Interfaces electro-catalytic
reactions
- Questions
- Can the catalyst be used in situ - for
catalysis of processes at liquid-liquid phase
boundaries? - If so, could catalyst density be controlled
(Langmuir trough approach) to optimise
reactivity? - Or can catalyst be removed and immobilised on a
(conventional) electrode?
5Liquid-liquid Electrochemistry 1Distribution
potential
- Each ion distribution equilibrium at the
organic/water interface - Define standard Galvani potential of transfer
- Vary potential with common-ion
- ratio of ion concentration in each phase
(maintained by hydrophilic/hydrophobic
counter-ions) poises potential - (Nernst-Donnan equilibrium )
- - ion transfer/electron transfer particularly
for SECM _at_ L/L.
6Liquid-liquid Interfaces 2Polarised Interfaces
- External polarisation of L/L interface (both
phases contain electrolyte) - Electrolytes AX(aq) and CY(org), the following
inequalities are met - also
- and
7Structure of L/L interface
- Essentially sharp, even down to molecular scale
nm-scale transition from phase 1 to phase 2. - Interfacial fluctuations (capillary waves)
- Competition between thermal motion and
interfacial tension - Appear to extend down to molecular scale) nm
scale amplitude - Experimental probes X-ray scattering, non-linear
optical spectroscopy (SFG, SHG), (Schlossman,
2000 5), (Richmond 2001 6). - gt Smooth, reproducible interface.
8Modify Sharp (but fluctuating) interface?
- Catalysis introduction of metal
(nano-)particles - Result electro-catalytic processes at interface
with only ionic contacts. - In order to study the electrochemical properties
of nanoparticle we need to attach them to an
electrode surface DJ Schiffrin, this week. - (1) Synthesise, then fix them
- (2) in situ growth.
9Approaches 1 vs. 2 at L/L interface
- Source of particles?
- (i) Assembled at interface (particles
surfactants) - (ii) Grown at interface (either (a) spontaneous
deposition or (b) electrodeposition).
Then spontaneous assembly (adsorption) at
interface
10(i) Assembly of (pre-formed) particles at L/L
interfaces
- Method form hydrosol (organo-sol), particles
adsorb interface on introduction of organic
(aqueous) phase. - Particles are surfactants, if favourable contact
angle,q. - Desorption energy given by
- Particles of given type, will be displaced by
those with larger radius (r) - Size segregation effect demonstrated for CdSe
(Russell, 2003 7).
11(i) Assembly of (pre-formed) particles at L/L
interfaces - continued
- Other terms in equation
- q can be varied by changing surface chemistry
(Vanmaekelbergh, 2003 8) induce assembly of
Au NPs by addition of ethanol contact angle
tends 90o. - Residual surface charge, Au NPs attracted to/from
polarised L/L interface see Figure, from
(Fermin, 2004 9) - Lippmann equation, interfacial tension is
function of applied potential
12Ordering of insulating particles at L/L interfaces
- System
- 1.6mm SiO2 particles (Duke Sci. Corp., USA).
- Hydrophobic coating - dichlorodimethylsilane.
- Non-aqueous phase
- Octane (e 2.0) or Octanone (e 10.3).
- Suspend at water/org interface
- (Campbell/Dryfe 2007, but after Nikolaides, 2002
10)
Dried close packing
13Spontaneous ordering of SiO2
Use image analysis to identify individual
particle positions radial distribution function
found. - metallic particles, more polar
phases?
- Field of view 190 microns x 143 microns
14(ii a) In situ growth of particles at L/L
interfaces spontaneous chemical reduction
- Faraday (1857 11) formation of colloidal Au at
L/L (water/CS2) interface - dark flocculent deposits, metal in a fine
state of division. - General problem of particle formation at L/L
interface is prevention of aggregation - e.g. Au deposition _at_ water/1,2-dichloroethane
interface, fractal structures form image
statistics, growth laws for aggregation process
(scale bar 10 microns)
15Control deposit aggregation
- (a) Template diameter lt intrinsic particle
diameter (TEM Pt deposition in zeolite Y) - Electrodeposition
- (b) Presence of ligands in interfacial system
(TEM Au deposition in presence of phosphines) - - Spontaneous deposition
16Stabilisation surface chemistry
- Ideal case modify surfaces to prevent
aggregation, but retain catalytic activity. - Brust/Schiffrin (1994, 12) ( Faraday?) thiol
stabilisation of Au formed by two-phase reduction - Hutchison (2000 13), Rao (2003 14) (
Faraday?) phosphine ligands for stabilisation
of Au formed at L/L interface. -
- Question for Au deposition, can process (i)
assembly of particles at L/L be related to
process (ii) in situ L/L formation?
17Au formation at L/L interface
- Au NPs formed at interface,
- TEM suggests particle size regular, density
increases with time.
1.5 hrs
24 hrs
18Comparison of (i) assembly vs. (ii) formation
- Works i.e. electron microscopy, xrd and xps
suggest can get similar (ca 2 nm) Au NP from
routes (i) and (ii) if we use the same reducing
agent.
i
19The characterisation problem
- Deposit characterisation ex situ, and (normally)
vacuum based methods - TEM, SEM, XPS particle distribution lost.
- Reactive systems e- beam/x ray damage?
- Dryfe/Campbell 2008
gives..
20In situ deposit characterisation gel or freeze
interface
- Deposit Au at gel/organic interface thickness
(600 nm) - Approach (ii), deposit Au at L/L interface (org
acrylate and photo-initiator) photo-cure
interface. - (after Benkoski 2007, approach (i) 15)
- Aim freeze structure of deposit aggregate of
ca 200 nm particles. Dryfe/Ho 2008
21In situ deposit characterisation alternative
techniques (1)
- Structure of neat L/L interface x-ray
scattering, non-linear spectroscopy. - Both recently applied to NP assembly/formation at
L/L interface. - Former e- density profile attributed to cluster
(d 18 nm) of 1.2 nm NPs. - Approach (ii)
From Sanyal (2008 16)
22In situ deposit characterisation alternative
techniques (2)
- Second-harmonic generation from polarised
water/octanone interface, for Au NPs assembled at
interface (ie approach (i)), - Short time-scales, reversible particle assembly
- Longer time-scales, irregularities in SHG
response attributed to NP aggregation.
From Galletto (2007 17).
23(ii b) In situ growth of particles at L/L
interfaces electrochemical reduction
- Motivation apply variable potential difference
(4-electrode methodology) - Study electrochemical growth in absence of solid
substrate - M. Guainazzi (1975 18) Cu, Ag
- Schiffrin/Kontturi, (1996 19) (Au, Pd)
- Unwin, (2003, 20) - (Ag)
- Cunnane, (1998,.21) (polymers)
- Dryfe, (2006, 22) (review).
- Advantage Analysis of current response -
information on growth.
24What is known at present?
- Deposit units nm scale, adsorb, tend to
aggregate. - (TEM of Pd, scale bar 100 nm)
- Replace single interface with array of micron
scale (or smaller) interfaces template. - g-alumina as template, 200 nm diameter pores
(SEM of Pd, scale bar 100 nm)
25Nucleation/Growth Voltammetry
- Electrolytic cell
- Where Mn PdCl42-,
- R n-BuFeCp2.
- DE0 0.3 V
- Insufficient for spontaneous reaction extra ?
0.2 V needed. - N.B. Irreversible deposition
Mn(1) nR(2) ? M(s) nO(?)
26Chronoamperometry
- Interfacial Pd depn. Step potential, increasing
h. -
- Approximate treatment, use of excess (40-fold) of
electron donor (org) metal precursor (aq). - Apply classical models to Pd deposition _at_ L/L.
- Behaviour intermediate (prog - blue vs.
instantaneous models - pink), - t gt tmax does not follow Cottrell
27Analysis of chronoamperometry
- Heerman/Tarallo Mirkin/Nilov models 23, 24
Applied overpotential/ V Nucleation Rate constant/ s-1 Nucleation saturation density /cm-2 Diffusion Coefficient/ cm2 s-1 BuFc / mM
0.47 0.29 10063 7.610-6 20
0.52 0.64 11589 9.8 10-6 20
0.57 0.76 8349 2.5 10-5 20
0.62 0.54 11526 4.1 10-5 20
28Extending model 4th parameter
- Cell
- Co-evolution of hydrogen
- Palladium surface grows, acts as catalyst.
- Proton reduction rate included as 4th parameter
(after Palomar, 2005 25) improved fit, but no
direct evidence for hydrogen evolution. - Deposition (almost) insensitive to applied
potential implies zero critical cluster!
29Competitive reactions
- pH dependence of metal deposition?
- However, ferrocene oxidation is coupled to H
transfer (H2O2 generation) - Nernst-Donnan equilibrium dictates interfacial
potential, hence extent of H transfer. (from Su,
Angew. Chem, 2008 26)
30Potential dependence of particle size
- High resolution TEM of Pd, deposition for 20 s at
L/L.
Df 0.5 V (upper), down to 0.4 V (lower)
higher h higher mean particle size.
31In situ electrocatalysis at L/L
- Photo-catalytic interfacial electron transfer,
mediated by Pd deposited in situ. - (from Lahtinen, Electrochem Comm, 2000 27)
- Complex system flow based approach ?
32Ex situ Electrocatalysis
- Au-phosphine stabilised NPs formed at L/L
interface, transferred by adsorption on to glassy
carbon surface - Response of GC to formaldehyde oxidation
(before/after Au NP adsorption) is shown - Electrocatalytic activity of materials.
(Luo/Dryfe, 2008)
33Conclusions
- L/L interface offers a ready contact-less route
to the - (i) assembly of (catalytically active) particles
and - (ii) to the growth of (catalytically active)
particles, the latter either by spontaneous or
electrochemical approaches. - Issues - Deposit geometry ? conditions
- Applicability of classical deposition models
- - difficulty/lack of applicability of standard
nano-scale characterisation techniques - Nano-scale morphology not dictated by strong
substrate-deposit attraction but strong
substrate(1)-substrate(2) repulsion. - Regularity of particle structure (before
aggregation) uniform flux to each particles?
34Suggestions for Future Work
- Catalytic production of H2O2 at the L/L interface
- Photo-catalytic reduction (H2, CO2??) at this
interface - Does one of the phases have to be H2O?
- Catalysis as fn(D?, p) ?
35References (1/2)
- 1. V.J. Cunnane, D.J. Schiffrin, C. Beltran and
G. Geblewicz, J. Electroanal. Chem. 247, 203
(1988). - 2. S.N. Tan, R.A.W. Dryfe and H.H. Girault,
Helv. Chim. Acta, 77, 231 (1994) - 3. I.T. Horvath and J. Rabai, Science, 266, 72
(1994) - 4. A.D. Ballantyne, A.K. Brisdon and R.A.W.
Dryfe, Chem. Comm., 4980.5. D.M. Mitrinovic,
A.M. Tikhonov, M. Li, Z.Q. Huang and M.L.
Schlossman, Phys. Rev. Lett. 85, 582 (2000). - 6. L.F. Scatena, M.G. Brown and G.L. Richmond,
Science 292, 908 (2001). - 7. Y. Lin, H. Skaff, T. Emrick, A.D. Dinsmore and
T.P. Russell, Science, 299, 226 (2003). - 8. F. Reincke, S.G. Hickey, W.K. Kegel, and D.
Vanmaekelbergh, Angew Chem. Int. Ed., 43, 458
(2004). - 9. B. Su, J.P. Abid, D.J. Fermín, H.H. Girault,
H. Hoffmannova, P. Krtil, Z. Samec, J. Amer.
Chem. Soc. 126, 915 (2004). - 10. M.G. Nikolaides, A.R. Bausch, M.F. Hsu, A.D.
Dinsmore, M.P. Brenner, C. Gay and D.A. Weitz,
Nature 420, 299 (2002). - 11. M. Faraday, Philos. Trans. I, 147, 145
(1857). - 12. M. Brust, M. Walker, D.J. Schiffrin and R.
Whyman, J. Chem. Soc. Chem. Comm., 801 (1994). - 13. W.W. Weare, S.M. Reed, M.G. Warner and J.E.
Hutchison, J. Amer. Chem. Soc., 122, 12890
(2000).
36References (2/2)
- 14. C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, V.V.
Agrawal and P. Saravanan, J. Phys. Chem. B, 107,
7391 (2003). - 15. J.J. Benkoski, R.L. Jones, J.F. Douglas and
A. Karim, Langmuir, 23, 3530 (2007). - 16. M.J. Sanyal, V.V. Agrawal, M.K. Bera, K.P.
Kalyanikutty, J. Daillant, C. Blot, S. Kubowicz,
O. Komovalov and C.N.R. Rao, J. Phys. Chem. C,
112, 1739 (2008). - 17. P. Galletto, H.H. Girault, C. Gomis-Bas, D.J.
Schiffrin, R. Antoine, M. Broyer and P.F. Brevet,
J. Phys. Cond. Matt. 19, 375108 (2007). - 18 M. Guainazzi, G. Silvestri and G. Serravalle,
J. Chem. Soc. Chem. Commun., 200 (1975). - 19 Y. Cheng and D.J. Schiffrin, J. Chem. Soc.
Farad. Trans., 92, 3865 (1996). - 20. J.D. Guo, T. Tokimoto, R. Othman and P.R.
Unwin, Electrochem. Comm., 5, 1005 (2003). - 21 V.J. Cunnane and U Evans, Chem. Comm., 2163
(1998). - 22. R.A.W. Dryfe, Phys. Chem. Chem. Phys. 8,
1869, (2006). - 23. L. Heermann and M. Tarallo, J. Electroanal.
Chem., 470, 70 (1999). - 24. M.V. Mirkin and E. Nilov, J. Electroanal.
Chem., 283, 35 (1990). - 25. M. Palomar-Pardave, B.R. Scharifker, E.M.
Arce and M. Romero-Romo, Electrochim. Acta, 50,
4736 (2005). - 26. B. Su, R. Partovi Nia, F. Li, M. Hojeij, M.
Prudent, C. Corminboeuf, Z. Samec and H.H.
Girault, Angew. Chem. Int. Ed., 47, 4675 (2008). - 27. R.M. Lahtinen, D.J. Fermín, H. Jensen, K.
Kontturi and H.H. Girault, Electrochem. Comm. 2,
230 (2000).