Seyfert Jets : weak, slow - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Seyfert Jets : weak, slow

Description:

John Silverman (Virginia/CfA) Charlie Nelson (Drake) Andrew ... Gem ~ SM V. Gradual acceleration. am ~ adrag alcf ~ 2 5 ~1033.5 dyne. Starting Assumptions ... – PowerPoint PPT presentation

Number of Views:43
Avg rating:3.0/5.0
Slides: 29
Provided by: thi139
Category:
Tags: gem | jets | seyfert | slow | weak

less

Transcript and Presenter's Notes

Title: Seyfert Jets : weak, slow


1
Seyfert Jets weak, slow heavy
  • Mark Whittle (Virginia)
  • David Rosario (Virginia)
  • John Silverman (Virginia/CfA)
  • Charlie Nelson (Drake)
  • Andrew Wilson (Maryland)
  • Markarian 78 provides ideal access to
  • Jet-gas interactions
  • Nature of jets in radio quiet AGN

AJ papers I Data, II Ionization, III Jet
properties
2
Overall Context
  • Several inter-dependent components
  • Jet flow relativistic material
  • Lobe ionized line-emitting
    gas
  • ISM thermal (low density)
    gas


LOBE
Relativistic gas
Line Emitting gas
ISM
Thermal gas
3
Overall Context
  • Several physical processes
  • entrainment of ISM by jet
  • acceleration of line-emitting gas
  • lobe expansion into ISM

4
Available Data
  • Emission Line image OIII (HST)
  • Radio image 3.6cm (VLA)
  • Emission Line kinematics (HST-STIS)
  • Briefly review this ?

5
Overlay Radio (contours) OIII (image)
6
4 STIS Slit Positions
7
STIS low dispersion spectral data
8
STIS high dispersion OIII 5007 data
9
Slit B kinematic measurements
Peak Velocity
FWHM
-2 -1 0 1
2 3
East Nuc
West
10
Extinction
Density
Line flux
Mass
Momentum
KE
11
Region Properties
  • 3 regions W-knot / E-fan / W-lobe
  • Age size/velocity 0.4 / 4 / 8 Myr
  • Ionized gas
  • Mass 0.4 / 1.0 / 1.1 x 106 Msun
  • Filling factor 30 / 1.5 / 0.5 x 10-4
  • Covering factor 0.5 / 0.5 / 0.5

12
Pressures Prel, Pem, Prad
  • High 1-few x 10-10 dyne cm-2
  • All decrease with radius ( r -1)
  • both consistent with presence in bulge ISM
  • Prel Pem ( Prad)
  • pressure balance between relativistic ionized
    gas
  • Prel can drive lobe expansion into ISM at VOIII
  • Prel Prad cant quite accelerate ionized gas
  • may need dynamical (ram) pressure of jet

13
Energies Luminosities
  • For each region, independently
  • LUV(intercept) 1000 x 1040 erg s-1
  • Lem 10LOIII 1000
  • Lmec KE/age 1
  • Lrel Erel/age 1
  • (Lexp 1)
  • Lradio 0.2
  • NLR ionized by nuclear UV (not shocks)
  • Nuclear photon power dominates all others
  • KEgas Eexp come from radio-emitting flow

14
The Jet Flow
  • Jet properties are illusive but important
  • Radio provides some access
  • pressures, stored internal energy
  • Emission lines very useful
  • estimate jets luminosity momentum
  • We follow approach of Bicknell et al (98)
  • But, with different starting assumptions
  • these lead to very different jet properties

15
Starting Assumptions
  • Jet Luminosity
  • B98 Lj Lem 100LOIII (since shock
    generated)
  • W04 Lj (EKE aeErel)/age aeElobe/age
  • Lj(W) 10-3 Lj(B) 1040.5 erg s-1
  • Jet Momentum Flux
  • B98 Fj/Aj Pram ?emV2sh ?emV2OIII
  • W04 Fj/Aj Pram am Gem /age /Aj
  • Fj(W) 10-2 Fj(B) 1033.5 dyne

16
JET LUMINOSITY
Emission Lines Lem
Bicknell et al 98
Shock
Lj
Lj Lem 100 x L5007
Our analysis
EKE S½M V2
Lj
1040.5 erg s-1
Elobe PV aeErel
Lj (EKE aeErel)/tage
ae asyn aad aff 2 10
For Mkn 78 other Seyferts Lj (us) 10-3
x Lj (B98)
17
JET MOMENTUM FLUX
VshVem 500 km/s
Our analysis
Gem SM V
Fj
Gradual acceleration
Fj amGem / tage
1033.5 dyne
am adrag alcf 2 5
For Mkn 78 other Seyferts Fj (us) 10-2 x
Fj (B98)
18
Starting Assumptions
  • Jet Luminosity
  • B98 Lj Lem 100LOIII (since shock
    generated)
  • W04 Lj (EKE aeErel)/age aeElobe/age
  • Lj(W) 10-3 Lj(B) 1040.5 erg s-1
  • Let Momentum Flux
  • B98 Fj/Aj Pram ?emV2sh ?emV2OIII
  • W04 Fj/Aj Pram am Gem /age /Aj
  • Fj(W) 10-2 Fj(B) 1033.5 dyne
  • Our jets are much weaker

19
Derivation of jet properties
  • Model jet as 2 component system
  • 1 Relativistic ratio defined by
    filling factor
  • 2 Thermal ffrel (1 ffth)
  • assume pressure balance Pth Prel B2min/8p
  • Energy Ej KEth (5/2) Pth 4Prel KErel
    0
  • Momentum Gj Gth Grel Gth Grel
    0
  • Use estimates of Ej Gj Bmin Aj tage
  • to derive many jet properties


20
Jet Properties
  • Jet energy (1040.5 erg s-1) momentum fluxes
  • (1033.5 dyne) both dominated by thermal gas
  • RKE KEj/Eint 10 / 2 / 1 ( Mj2)
  • decrease suggests KE converted to internal
  • Ram pressure Pram Fj/Aj 30 / 7 / 4 x Prel
  • Pram(W04) 10-2 10-3 Pram(B98)
  • Our jet is gentle
  • Pram is significantly greater than Prel Prad
  • hydrodynamic acceleration of ionized gas
  • shocks in ionized gas are slow 10-50 km s-1

21
Jet Properties
  • Jet velocity Vj 2Lj/ Fj (1 Rke-1)
  • Vj 0.3 3 x 103 km s-1 1 few x VOIII
  • cf. Vj (B98) 15 90 x 103 km s-1
  • our jet is slow
  • Jet density ?j Fj/PramAj 0.15 cm-3
    ?ISM
  • consistent with entrained ISM
  • our jet is dense ? ?j /?ISM 1
  • future simulations should consider ? 1 jets

22
Jet Properties
  • Jet temperature Mach
  • Tth Pj /knth ? 106.5 107.5 K
  • temp 0.2 0.7 fully virialized (cf. Pram gt
    Prel)
  • Mj 5 / 2.5 / 1.5 ? jet is transonic
  • ? efficient entrainment
    decollimation
  • Jet mass transport Mth Fj/ Vj 0.5 Msun yr-1
  • Mth tage 106 Msun thermal content of lobe
  • Jet supplies lobes thermal component ?



23
Jet Properties
  • Jet synchrotron efficiency
  • Rsyn Lradio /Lj Lradio tage /Elobe
  • 0.1 Fff P-103/4
    t6 1-few
  • similar to other radio sources (e.g. CSS
    FR-I,II)
  • not obvious why very different types of jet
  • cf. Rsyn(B98) 10-4 ltlt Rsyn(us)
  • ? sub-equipartition fields, or
  • ? low ffrel ? thermal component dominates

24
Jet Base / Inner Jet
  • Previous analysis applies to scales gt 100pc
  • ? thermally dominated flow slow dense
  • Is the flow created like this?
  • could it start with ffrel 1.0, then entrain
    thermal gas
  • probably not need Fj-b Fj-kpc
  • Lj-b gt
    Lj-kpc
  • S8Ghz lt
    3mJy
  • implies Vj-b c and Lj-b 1043 erg s-1
  • Most energy lost in core ? bright radio ? not
    seen
  • Jet created with thermal component
  • may define nature of radio quiet jets
  • note cant be pure thermal (Rsyn too high)

25
Conclusions
  • Mkn 78 gives excellent access to jet properties
  • Must combine radio and emission line data
  • ? pressure, internal energy, KE, momentum, age
  • For three regions, we find
  • Age sequence 106 Msun low ff high cf
  • P PISM Prel Pem Prad lobe expansion
    VOIII
  • LUV Lem dominate shocks Erel EKE
  • Model jet as 2 component relativistic thermal
  • follow Bicknell et al 98 but dont use shocks
  • instead, take Lj aeElobe/tage Fj amGem /
    tage
  • derive jet properties ?

26
Conclusions
  • The jet is weak Lj 1040.5 erg/s Fj 1033.5
    dyne
  • Thermal gas dominates jet energy momentum
  • Pram 4 - 30 Pint gentle jet
  • adequate to accelerate ionized gas
  • drives slow shocks into ionized clouds (10-50 km
    s-1)
  • Jet velocity 1-few VOIII relatively slow
    jet
  • Jet density ?ISM dense jet
  • Transonic Mj 2-5 Tth 106.5 K Rsyn
    normal
  • Thermal content may fill radio lobe
  • Jet base jet created with thermal component

27
New HST Project 1 or 2 slits on six other
objects with evidence for JGI.
28
Comparison Ours is a kinder, gentler jet.
Maybe more plausible ?
Jet Property Our Jet Bicknell et al
Energy flux Lj x 1 x 1000
Momentum flux Fj x 1 x 100
Velocity Vj 300 3000 km/s (1 few Vem) 15 90 x103 km/s (0.05c 0.3c)
Density nj 0.1 5 cm-3 0.1 5 cm-3
Ram pressure Pj x 1 x 100
Cloud shock Vsh 10 50 km/s 500 1000 km/s
Temperature Tj 106 K 109 K
Mach No. Mj 2 5 1 few
Write a Comment
User Comments (0)
About PowerShow.com