Strata2.1 - PowerPoint PPT Presentation

About This Presentation
Title:

Strata2.1

Description:

... .edu/Sed_html/movie4.html High sediment-flux rift basin http://hydro.geosc.psu.edu/Sed_html/movie5.html Near-forebulge stratigraphy Prediction Near-forebulge ... – PowerPoint PPT presentation

Number of Views:24
Avg rating:3.0/5.0
Slides: 30
Provided by: JuanLo9
Learn more at: http://www.geol.lsu.edu
Category:

less

Transcript and Presenter's Notes

Title: Strata2.1


1
  • Strata2.1
  • Forward Modeling to learn about the controls of
    Tectonics, sedimentation and eustasy on
    stratigraphic geometry
  • Strata2.1 is Open Source software was written by
    Flemings, Grotzinger, Morris and Nelson, 1996

2
Baltimore Canyon Trough
  • Movie produced by students Spinelli an Hotsinski
  • http//hydro.geosc.psu.edu/Sed_html/movie1.html

Sea-level drops produces major regional
unconformity
3
Mixed Carbonate-clastic systemsMiddle to Late
Ordovician, Central Pennsylvania
  • The following movie was created by Roberta
    Hotsinski and Andrew Hoover http//hydro.geosc.ps
    u.edu/Sed_html/movie2.html

4
Low heat-flux rift basin
  • http//hydro.geosc.psu.edu/Sed_html/movie4.html

Sediment traps heat faster than it can escape
(thermal blanket effect)
5
High sediment-flux rift basin
  • http//hydro.geosc.psu.edu/Sed_html/movie5.html

A thick thermal blanket traps heat in deeper
parts of the basin
6
Near-forebulge stratigraphy
  • Prediction

7
Near-forebulge stratigraphy
  • Prediction

8
Near-forebulge stratigraphy
  • Prediction

Erosion
9
Near-forebulge stratigraphy
  • Prediction

10
Near-forebulge stratigraphy
  • Strata 2.1

11
Near-forebulge stratigraphy
  • Strata 2.1

Erosion
12
Input parameters in Strata
  • Sediment types
  • Compaction and composition
  • Tectonic styles
  • Sea-level changes
  • Heat flow

Output data in Strata (versus time)
Depth-sections Time-sections Wheeler
plots Seismic responses
13
Input parameters in Strata
  • Sediment types
  • Compaction and composition
  • Tectonic styles
  • Sea-level changes
  • Heat flow

Output data in Strata (versus time)
Depth-sections Time-sections Wheeler
plots Seismic responses
14
Sediment Types
Clastic sediments
Continental diffusion rate
pelagic
Marine diffusion rate
Sediment flux
Sedimentation rates
15
q-volume sediment flux (m2/s) k- diffusion
constant h-elevation x-horizontal distance
Continental diffusion rate
Values can vary across the model and input in
tabular form (x q1 x2 q2 x3 q3 etc.)
Sedimentation rates
16
Sediment Types
Carbonate sediments
  • Sedimentation rate types simple exponential
    decay (epeiric)
  • Sedimentation rate types constant and simple
    exponential decay below a certain depth
    (oceanic)

Sedimentation rates
17
Input parameters in Strata
  • Sediment types
  • Compaction and composition
  • Tectonic styles
  • Sea-level changes
  • Heat flow

Output data in Strata (versus time)
Depth-sections Time-sections Wheeler
plots Seismic responses
18
Compaction and Composition
Porosity versus depth- exponential compaction
relation Sand-shale ratios based on water-depth
or diffusion constants
19
Input parameters in Strata
  • Sediment types
  • Compaction behavior
  • Tectonic styles
  • Sea-level changes
  • Heat flow

Output data in Strata (versus time)
Depth-sections Time-sections Wheeler
plots Seismic responses
20
Tectonic styles of subsidence
  • Subsidence increases linearly left to right
    (foreland)
  • Subsidence is constant (flat geometry/cratonic)
  • Subsidence increases linearly right to left
    (passive)
  • Simple elastic flexure or local isostasy (Te0)

21
Input parameters in Strata
  • Sediment types
  • Compaction behavior
  • Tectonic styles
  • Sea-level changes
  • Heat flow

Output data in Strata (versus time)
Depth-sections Time-sections Wheeler
plots Seismic responses
22
Sea-level changes
  • As a file (all parameters can be entered as such)
  • As a sinusoid

23
Input parameters in Strata
  • Sediment types
  • Compaction behavior
  • Tectonic styles
  • Sea-level changes
  • Heat flow

Output data in Strata (versus time)
Depth-sections Time-sections Wheeler
plots Seismic responses
24
Heat Flow
  • mW/m2 (e.g., 60 for continents)
  • Thermal conductivity is calculated as a funciton
    of the sand, shale and fluid content which may be
    derived from the sedimentation diffusion
    constants and water depths
  • Thermal maturation indices can then be calculated
  • Heat flow is one-dimensional (hot-to-cold
    --down-up)

25
Input parameters in Strata
  • Sediment types
  • Compaction behavior
  • Tectonic styles
  • Sea-level changes
  • Heat flow

Output data in Strata (versus time)
Depth-sections Time-sections Wheeler
plots Seismic responses
26
Input parameters in Strata
  • Sediment types
  • Compaction behavior
  • Tectonic styles
  • Sea-level changes
  • Heat flow

Output data in Strata (versus time)
Depth-sections Time-sections Wheeler
plots Seismic responses
27
Wheeler Plot
Erosion
sea-level drop
time
distance
28
Input parameters in Strata
  • Sediment types
  • Compaction behavior
  • Tectonic styles
  • Sea-level changes
  • Heat flow

Output data in Strata (versus time)
Depth-sections Time-sections Wheeler
plots Seismic responses
29
Seismic Responses
  • Seismic velocity is calculated using the ration
    of sand, shale and water
  • Density for sand, shale and fluid is user-input
  • Seismic sections are displayed
Write a Comment
User Comments (0)
About PowerShow.com