Title: A L C O R
1A L C O R
From quark combinatorics to spectral coalescence
T.S. Bíró, J. Zimányi , P. Lévai, T. Csörgo,
K. Ürmössy MTA KFKI RMKI Budapest, Hungary
- History of the idea
- Extreme relativistic kinematics
- Hadrons from quasiparticles
- Spectral coalescence
2A L C O R the history
- Algebraic combinatoric rehadronization
- Nonlinear vs linear coalescence
- Transchemistry
- Recombination vs fragmentation
- Spectral coalescence
3Quark recombination combinatoric rehadronization
1981
4Quark recombination combinatoric rehadronization
5Robust ratios for competing channels
PLB 472 p. 243 2000
6Collision energy dependence in ALCOR
7Collision energy dependence in ALCOR
100
AGS
Stopped per cent of baryons
SPS
10
RHIC
LHC
leading rapidity
0
2
4
6
8
10
8Collision energy dependence in ALCOR
200
AGS
Newly produced light dN/dy
100
SPS
RHIC
LHC
leading rapidity
0
2
4
6
8
10
9Collision energy dependence in ALCOR
0.2
AGS
0.1
K / pi ratio
SPS
RHIC
LHC
leading rapidity
0
2
4
6
8
10
10A L C O R kinematics
- 2-particle Hamiltonian
- massless limit
- virial theorem
- coalescence cross section
11A L C O R kinematics
Non-relativistic quantum mechanics problem
12Virial theorem for Coulomb
Deformed energy addition rule
13Test particle simulation
y
h(x,y) const.
E
E
2
E
4
E
x
E
3
E
1
E
3
-1
?
uniform random Y(E ) ( ? h/ ? y)
dx
3
hconst
0
14Massless kinematics
Tsallis rule
15A special pair-energy
E E E E E / E
1
2
c
12
1
2
(1 x / a) (1 y / a ) 1 ( x y xy /
a ) / a
Stationary distribution
- v
f ( E ) A ( 1 E / E )
c
16Color balanced pair interaction
color state
color state
E E E D
2
12
1
singlet
octet
D 8 D 0
Singlet channel hadronization
singlet
E E E - D
2
12
1
Octet channel parton distribution
octet
E E E D / 8
2
12
1
17Semiclassical binding
- D / 2
virial
singlet
tot
rel
E E E - D E E
- D
for
12
1
2
kin
kin
Coulomb
Zero mass kinematics (for small f angle)
E E
rel
2
1
2
E 4 sin (f / 2)
kin
4 / E
E E
c
1
2
constant?
Octet channel Tsallis distribution
Singlet channel convolution of Tsallis
distributions
18Coalescence cross section
a Bohr radius in Coulomb potential
Pick-up reaction in non-relativistic potential
19Limiting temperature with Tsallis distribution
( with A. Peshier, Giessen )
hep-ph/0506132
Massless particles, d-dim. momenta, N-fold
d
ltX(E)gt
TE
?
c
T E / d
c
H
j1
E j T
c
N
For N ? 2 Tsallis partons ? Hagedorn hadrons
20Temperature vs. energy
21 Hadron mass spectrum from X(E)-folding of Tsallis
N 2 N 3
22A L C O R quasiparticles
- continous mass spectrum
- limiting temperature
- QCD eos ? quasiparticle masses
- Markov type inequalities
23High-T behavior of ideal gases
Pressure and energy density
24High-T behavior of a continous mass spectrum of
ideal gases
interaction measure
Boltzmann f exp(- ? / T) ? ?(x) ? x
K1(x)
25High-T behavior of a single mass ideal gas
interaction measure for a single mass M
Boltzmann f exp(- ? / T) ? ?(0) ?
26High-T behavior of a particular mass spectrum of
ideal gases
Example 1/m² tailed mass distribution
27High-T behavior of a continous mass spectrum of
ideal gases
High-T limit ( µ 0 )
Boltzmann c ?/2, Bose factor ??(5), Fermi
factor ?(5)
Zwanziger PRL, Miller hep-ph/0608234 claim
(e-3p) T
28High-T behavior of lattice eos
SU(3)
29High-T behavior of lattice eos
hep-ph/0608234 Fig.2 8 32 ³
30High-T behavior of lattice eos
31High-T behavior of lattice eos
32From pressure to mass
Pressure of relativistic ideal gas of massive
particles
Lattice QCD data from Budapest-Wuppertal JHEP
0601, 089, 2006. Bielefeld NPB 469, 419,
1996.
33Lattice QCD eos fit
Biro et.al.
Peshier et.al.
34Quasiparticle mass distributionby inverting the
Boltzmann integral
Inverse of a Meijer trf. inverse imaging
problem!
35Bounds on integrated mdf
- Markov, Tshebysheff, Tshernoff, generalized
- Applied to w(m) bounds from p
- Applied to w(mµ,T) bounds from ep
- Boltzmann mass gap at T0
- Bose mass gap at T0
- Fermi no mass gap at T0
- Lattice data
36Markov inequality and mass gap
T and µ dependent w(m) requires mean field
term, but this is cancelled in (ep) eos data!
37Boltzmann scaling functions
?
?
38General Markov inequality
Relies on the following property of the function
g(t)
i.e. g() is a positive, montonic growing
function.
39Markov inequality and mass gap
There is an upper bound on the integrated
probability P( M ) directly from (ep) eos
data!
40SU(3) LGT upper bounds
4121 QCD upper bounds
42A L C O R spectral coalescence
- p-relative ltlt p-common
- convolution of thermal distributions
- convolution of Tsallis distributions
- convolution with mass distributions
43Idea Continous mass distribution
- Quasiparticle picture has one definite mass,
which is temperature dependent M(T) - We look for a distribution w(m), which may be
temperature dependent
44Why distributed mass?
c o a l e s c e n c e c o n v o l u t i o n
valence mass ? hadron mass ( half or
third)
w(m) w(had-m)
w(m)
Zimányi, Lévai, Bíró, JPG 31711,2005
w ( m ) is not constant zero probability
for zero mass
Conditions
45Coalescence from Tsallisdistributed quark matter
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50Kaons
51Recombination of Tsallis spectra at high-pT
52(q-1) is a quark coalescence parameter
53Properties of quark matter from fitting
quark-recombined hadron spectra
- T (quark) 140 180 MeV
- q (quark) 1.22
- power 4.5 (same as for ee- spectra)
- v (quark) 0 0.5
- Pion near coalescence (q-1) value
54SQM 1996 Budapest
55SQM 1996 Budapest
56July 22, 2006, Budapest