A L C O R - PowerPoint PPT Presentation

About This Presentation
Title:

A L C O R

Description:

A L C O R. History of the idea. Extreme relativistic kinematics. Hadrons from quasiparticles ... Zero mass kinematics (for small f angle): Octet channel: ... – PowerPoint PPT presentation

Number of Views:60
Avg rating:3.0/5.0
Slides: 56
Provided by: tsb39
Category:
Tags: kinematics

less

Transcript and Presenter's Notes

Title: A L C O R


1
A L C O R
From quark combinatorics to spectral coalescence
T.S. Bíró, J. Zimányi , P. Lévai, T. Csörgo,
K. Ürmössy MTA KFKI RMKI Budapest, Hungary
  • History of the idea
  • Extreme relativistic kinematics
  • Hadrons from quasiparticles
  • Spectral coalescence

2
A L C O R the history
  • Algebraic combinatoric rehadronization
  • Nonlinear vs linear coalescence
  • Transchemistry
  • Recombination vs fragmentation
  • Spectral coalescence

3
Quark recombination combinatoric rehadronization
1981
4
Quark recombination combinatoric rehadronization
5
Robust ratios for competing channels
PLB 472 p. 243 2000
6
Collision energy dependence in ALCOR
7
Collision energy dependence in ALCOR
100
AGS
Stopped per cent of baryons
SPS
10
RHIC
LHC
leading rapidity
0
2
4
6
8
10
8
Collision energy dependence in ALCOR
200
AGS
Newly produced light dN/dy
100
SPS
RHIC
LHC
leading rapidity
0
2
4
6
8
10
9
Collision energy dependence in ALCOR
0.2
AGS
0.1
K / pi ratio
SPS
RHIC
LHC
leading rapidity
0
2
4
6
8
10
10
A L C O R kinematics
  • 2-particle Hamiltonian
  • massless limit
  • virial theorem
  • coalescence cross section

11
A L C O R kinematics
Non-relativistic quantum mechanics problem
12
Virial theorem for Coulomb
Deformed energy addition rule
13
Test particle simulation
y
h(x,y) const.
E
E
2
E
4
E
x
E
3
E
1
E
3
-1
?
uniform random Y(E ) ( ? h/ ? y)
dx
3
hconst
0
14
Massless kinematics
Tsallis rule
15
A special pair-energy
E E E E E / E
1
2
c
12
1
2
(1 x / a) (1 y / a ) 1 ( x y xy /
a ) / a
Stationary distribution
- v
f ( E ) A ( 1 E / E )
c
16
Color balanced pair interaction
color state
color state
E E E D
2
12
1
singlet
octet
D 8 D 0
Singlet channel hadronization
singlet
E E E - D
2
12
1
Octet channel parton distribution
octet
E E E D / 8
2
12
1
17
Semiclassical binding
- D / 2
virial
singlet
tot
rel
E E E - D E E
- D
for
12
1
2
kin
kin
Coulomb
Zero mass kinematics (for small f angle)
E E
rel
2
1
2
E 4 sin (f / 2)
kin
4 / E
E E
c
1
2
constant?
Octet channel Tsallis distribution
Singlet channel convolution of Tsallis
distributions
18
Coalescence cross section
a Bohr radius in Coulomb potential
Pick-up reaction in non-relativistic potential
19
Limiting temperature with Tsallis distribution
( with A. Peshier, Giessen )
hep-ph/0506132
Massless particles, d-dim. momenta, N-fold
d
ltX(E)gt
TE
?
c


T E / d
c
H
j1
E j T
c
N
For N ? 2 Tsallis partons ? Hagedorn hadrons
20
Temperature vs. energy
21
Hadron mass spectrum from X(E)-folding of Tsallis
N 2 N 3
22
A L C O R quasiparticles
  • continous mass spectrum
  • limiting temperature
  • QCD eos ? quasiparticle masses
  • Markov type inequalities

23
High-T behavior of ideal gases
Pressure and energy density
24
High-T behavior of a continous mass spectrum of
ideal gases
interaction measure
Boltzmann f exp(- ? / T) ? ?(x) ? x
K1(x)
25
High-T behavior of a single mass ideal gas
interaction measure for a single mass M
Boltzmann f exp(- ? / T) ? ?(0) ?
26
High-T behavior of a particular mass spectrum of
ideal gases
Example 1/m² tailed mass distribution
27
High-T behavior of a continous mass spectrum of
ideal gases
High-T limit ( µ 0 )
Boltzmann c ?/2, Bose factor ??(5), Fermi
factor ?(5)
Zwanziger PRL, Miller hep-ph/0608234 claim
(e-3p) T
28
High-T behavior of lattice eos
SU(3)
29
High-T behavior of lattice eos
hep-ph/0608234 Fig.2 8 32 ³
30
High-T behavior of lattice eos
31
High-T behavior of lattice eos
32
From pressure to mass
Pressure of relativistic ideal gas of massive
particles
Lattice QCD data from Budapest-Wuppertal JHEP
0601, 089, 2006. Bielefeld NPB 469, 419,
1996.
33
Lattice QCD eos fit
Biro et.al.
Peshier et.al.
34
Quasiparticle mass distributionby inverting the
Boltzmann integral
Inverse of a Meijer trf. inverse imaging
problem!
35
Bounds on integrated mdf
  • Markov, Tshebysheff, Tshernoff, generalized
  • Applied to w(m) bounds from p
  • Applied to w(mµ,T) bounds from ep
  • Boltzmann mass gap at T0
  • Bose mass gap at T0
  • Fermi no mass gap at T0
  • Lattice data

36
Markov inequality and mass gap
T and µ dependent w(m) requires mean field
term, but this is cancelled in (ep) eos data!
37
Boltzmann scaling functions
?
?
38
General Markov inequality
Relies on the following property of the function
g(t)
i.e. g() is a positive, montonic growing
function.
39
Markov inequality and mass gap
There is an upper bound on the integrated
probability P( M ) directly from (ep) eos
data!
40
SU(3) LGT upper bounds
41
21 QCD upper bounds
42
A L C O R spectral coalescence
  • p-relative ltlt p-common
  • convolution of thermal distributions
  • convolution of Tsallis distributions
  • convolution with mass distributions

43
Idea Continous mass distribution
  • Quasiparticle picture has one definite mass,
    which is temperature dependent M(T)
  • We look for a distribution w(m), which may be
    temperature dependent

44
Why distributed mass?
c o a l e s c e n c e c o n v o l u t i o n
valence mass ? hadron mass ( half or
third)
w(m) w(had-m)
w(m)
Zimányi, Lévai, Bíró, JPG 31711,2005
w ( m ) is not constant zero probability
for zero mass
Conditions
45
Coalescence from Tsallisdistributed quark matter
46
(No Transcript)
47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
Kaons
51
Recombination of Tsallis spectra at high-pT
52
(q-1) is a quark coalescence parameter
53
Properties of quark matter from fitting
quark-recombined hadron spectra
  • T (quark) 140 180 MeV
  • q (quark) 1.22
  • power 4.5 (same as for ee- spectra)
  • v (quark) 0 0.5
  • Pion near coalescence (q-1) value

54
SQM 1996 Budapest
55
SQM 1996 Budapest
56
July 22, 2006, Budapest
Write a Comment
User Comments (0)
About PowerShow.com