MFE 230H Section 1 - PowerPoint PPT Presentation

1 / 13
About This Presentation
Title:

MFE 230H Section 1

Description:

Plus skewness and kurtosis. Volatilities and correlation. Daily volatility ... (?) SKEW(Data) SE = Sqrt(6/T) Kurtosis (d) KURT(Data) SE = Sqrt(24/T) Questions? ... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 14
Provided by: bradynbr
Category:
Tags: 230h | mfe | kurtosis | section

less

Transcript and Presenter's Notes

Title: MFE 230H Section 1


1
MFE 230HSection 1
  • Bradyn Breon-Drishbreon_at_haas.berkeley.edu
  • Aug. 14, 2007

2
Administrative details
  • Office hours
  • Tentatively
  • Tue. 530pm-730pm, Room F689
  • Sections
  • Tentatively
  • Tue. 4pm-530pm, Room TBA

3
Assignment 1
  • Volatilities
  • VAR (relative to the mean)
  • Parametric
  • Empirical (nonparametric)
  • Confidence intervals

4
Simplified example
  • Daily SP close 12/29/1995-12/2/03
  • Follow-up period (part (d)) 12/2/03-12/31/03
  • Long position of 1 billion
  • For returns, VAR, etc. will compute daily values
    only

5
The Tasks
  • Compute daily volatilities
  • First-order serial correlation and test if
    significantly different from zero
  • Compute parametric VAR
  • Standard error and 95 confidence interval
  • Compute empirical VAR
  • Plus skewness and kurtosis

6
Volatilities and correlation
  • Daily volatility
  • Or, more conveniently STDEV(Data)

7
Volatilities and correlation - 2
  • Correlation
  • CORREL(Data1,Data2)
  • Use series and lagged series as inputs
  • Standard error?
  • For large T, under null hypothesis of zero
    correlation

8
Parametric VAR
  • General formula (eq. 5.10, p.111)
  • -a is 1-c quantile of a standard normal
    distribution, where c confidence level
  • The time scaling depends on the period for the
    estimated volatility

9
Parametric VAR Standard Error
  • SE(VAR) depends on SE(s)
  • From eq. 5.15 (p.124)

10
Parametric VAR Standard Error - 2
  • Given VAR formula, we then have
  • So that 95 c.i. for VAR is

11
Empirical VAR
  • General formula (eq. 5.2, p.108)
  • R 0.05 quantile of the empirical distribution
  • Percentile(Data,0.05)

12
Skewness Kurtosis
  • Skewness (?)
  • SKEW(Data)
  • SE Sqrt(6/T)
  • Kurtosis (d)
  • KURT(Data)
  • SE Sqrt(24/T)

13
Questions?
Write a Comment
User Comments (0)
About PowerShow.com