Title: Adenosine Receptor Heteromers as
1Adenosine Receptor Heteromers as Targets for the
Psychostimulant Effects of Caffeine
Sergi Ferré CNS Receptor-Receptor Interactions
Unit National Institute on Drug Abuse, IRP
Biomedical Research Center NIH, DHHS, Baltimore,
MD, USA
2Central Effects of Psychostimulants (Amphetamine,
Cocaine, Caffeine)
3Increase in Motor Activity
Central Effects of Psychostimulants (Amphetamine,
Cocaine, Caffeine)
4Increase in Motor Activity
Arousal
Central Effects of Psychostimulants (Amphetamine,
Cocaine, Caffeine)
5Increase in Motor Activity
Arousal
Central Effects of Psychostimulants (Amphetamine,
Cocaine, Caffeine)
Reinforcing Effects
6Increase in Motor Activity
Arousal
Central Effects of Psychostimulants (Amphetamine,
Cocaine, Caffeine)
Reinforcing Effects
Subjective Stimuli (Discriminative-Stimulus
Effects)
7(No Transcript)
8(No Transcript)
9Increase in Motor Activity
Arousal
Dopamine-Dependent Central Effects of Caffeine
Reinforcing Effects
Subjective Stimuli (Discriminative-Stimulus
Effects)
10Caffeine
Solinas et al (2005) Psychopharmacology
179576-586
11?
Adenosine
12 High density
Low density
Bailey et al (2002) Brain Res 94 68-79
13Both A1 and A2A receptor antagonists produce
motor activity in rodents
Solinas et al (2005) Psychopharmacology
179576-586
Karcz-Kubicha et al (2003) Neuropsychopharmacolog
y 281281-1291
14Tolerance to the A1 receptor-mediated
motor-activating effects of caffeine with chronic
treatment
Karcz-Kubicha et al (2003) Neuropsychopharmacolog
y 281281-1291
15Dopaminergic-like discriminative
stimulus-effects of caffeine and selective A1 and
A2A receptor antagonists
Justinova et al (2003) J Pharmacol Exp Ther
307977-986
Justinova et al (2009) Psychopharmacology
203355-367
16Involvement of A1 receptors in the
discriminative-stimulus effects of caffeine
Solinas et al (2005) Psychopharmacology
179576-586
17Involvement of A1 receptors in the
dopamine-releasing effects of caffeine
Solinas et al (2002) J Neurosci
226321-6324 Quarta et al (2004) J Neurochem
881151-1158
18Tolerance to the A1 receptor-mediated
dopamine-releasing effects of caffeine with
chronic treatment
Caffeine 30 mg/kg
CPT 4.8 mg/kg
MSX-3 1 mg/kg
Quarta et al (2004) J Neurochem 881151-1158
19Increase in Motor Activity striatal A1 and A2A
receptors
Arousal
Dopamine-dependent Central Effects of Caffeine
Reinforcing Effects striatal A1 and A2A receptors
Subjective Stimuli (Discriminative-Stimulus
Effects) A1 receptors, non-striatal?
20Increase in Motor Activity
Arousal A1 and A2A receptors in hypothalamus
(orexinergic and histaminergic nuclei) A1
receptors in brainstem and basal forebrain
(cholinergic nuclei)
Dopamine-independent Central Effects of Caffeine
Reinforcing Effects
Subjective-Stimuli (Discriminative-Stimulus
Effects)
Basheer et al (2004) Prog Neurobiol 73379-396
Huang et al (2005) Nat Neurosci 8858-859
21Two new concepts, receptor heteromer and local
module facilitate the understanding of the
functional role of interactions between
neurotransmitters in the central nervous system,
as well as the mechanisms of central acting
drugs, such as caffeine.
22Receptor Heteromer Macromolecular complex
composed of at least two (functional) receptor
units with biochemical properties that are
demonstrably different from those of its
individual components
Ferré et al (2009) Nat Chem Biol 5131-134
23Heteromeric Receptor Dimeric or oligomeric
receptor for which the minimal functional unit is
composed of two or more different subunits that
are not functional on their own
Ferré et al (2009) Nat Chem Biol 5131-134
24Bioluminescence Resonance Energy Transfer (BRET)
25Bioluminescence Resonance Energy Transfer (BRET)
A2AR-RlucD2Rmut-YFP
26Bioluminescence Resonance Energy Transfer (BRET)
A2AR-RlucD2R-YFP
A2AR-RlucD2Rmut-YFP
Canals et al (2003) J Biol Chem 27846741-46749
27Bioluminescence Resonance Energy Transfer (BRET)
SAQEpSQGN
VLRRRRKR
A2AR-RlucD2R-YFP
A2AR-RlucD2Rmut-YFP
D2R
A2AR
Canals et al (2003) J Biol Chem
27846741-46749 Ciruela et al (2004) Anal Chem
765354-5363 Woods and Ferré (2005) J Proteome
Res 41397-1402
28Bioluminescence Resonance Energy Transfer (BRET)
BRET
SAQEpSQGN
VLRRRRKR
A2AR-RlucD2R-YFP
A2ARmut-RlucD2R-YFP
D2R
A2AR
Navarro et al. (in preparation)
29But, how do we demonstrate the existence of
receptor heteromers in the brain?
30Striatal co-localization of A2A and D2 receptors
Quiroz et al (2009) J Neurosci (resubmitted)
31Biochemical fingerprint of the receptor
heteromer Biochemical characteristic of a
receptor heteromer, which can be used for its
identification in a native tissue.
Ferré et al (2007) TiNS 30440-446
Ferré et al (2009) Nat Chem Biol 5131-134
32Allosteric interaction in the receptor heteromer
Intermolecular interaction by which binding of a
ligand to one receptor unit in the receptor
heteromer changes the binding properties of
another receptor unit
Adenosine Dopamine
Ferré et al (2009) Nat Chem Biol 5131-134
33Allosteric interaction in the A2A-D2 receptor
heteromer
Rat striatal tissue Ferré et al (1991) Proc Natl
Acad Sci USA 887238-7241 Dixon et al (1997) J
Neurochem 69315-321 Human striatal tissue
Diaz-Cabiale et al (2001) Neuroreport
121831-1834 Ltk- fibroblast cells Dasgupta et
al (1996) Eur J Pharmacol 316325-331 CHO cells
Kull et al (1999) Biochem Pharmacol
581035-1045 SH-SY5Y neuroblastoma cells Salim
et al (2000) J Neurochem 74432-439 HEK cells
Kuldacek et al (2003) Neuropsychopharmacology
291317-1327
34Allosteric interaction in the A2A-D2 receptor
heteromer in the striatal GABAergic
enkephalinergic neuron
D2R
A2AR
Azdad et al (2009) Neuropsychopharmacology
34972-986
35Allosteric interaction in the A2A-D2 receptor
heteromer in the striatal GABAergic
enkephalinergic neuron
D2R
A2AR
SAQEpSQGN peptide
Azdad et al (2009) Neuropsychopharmacology
34972-986
36Local Module The minimal portion of one or more
neurons and-or one or more glial cells that
operates as an independent integrative unit.
Ferré et al (2007) Brain Res Rev 5555-67
37(No Transcript)
38I
Ferré et al (2007) Brain Res Rev 5555-67 Ferré
et al (2009) Neuropharmacology 56226-234
39GLU
DA
Striatal spine module I
40GLU
GLU
DA
Striatal spine module I
41GLU
GLU
DA
Striatal spine module I
42GLU
ATP
GLU
ADE
ATP
ADE
DA
Striatal spine module I
43(No Transcript)
44(No Transcript)
45Antagonistic A2A-D2 receptor interaction in the
GABA enkephalinergic neuron
Enkephalinergic neuron
Ferré et al (1993) J Neurosci 135402-5406
46Antagonistic A2A-D2 receptor interaction in the
GABA enkephalinergic neuron
Enkephalinergic neuron
Ferré et al (1993) J Neurosci 135402-5406
47Ungerstedts model
Ferré et al (2001) Parkinsonism Relat Disord
7235-241
Fenu et al. (1997) Eur. J. Pharmacol. 321143-147
Fenu et al (2001) Eur J Pharmacol 321143-147
48Ungerstedts model
Ferré et al (2001) Parkinsonism Relat Disord
7235-241
Fenu et al. (1997) Eur. J. Pharmacol. 321143-147
Fenu et al (2001) Eur J Pharmacol 321143-147
49(No Transcript)
50Allosteric interaction in the A1-D1 receptor
heteromer
Rat striatal tissue Ferré et al (1994)
NeuroReport 673-76 Ltk- fibroblast cells Ferré
et al (1996) J Biol Chem 2734718-4724 HEK cells
Cao et al (2006) Eur J Pharmacol 54829-35
51Antagonistic A1-D1 receptor interaction in the
GABA dynorphinergic neuron
Dynorphinergic neuron
Ferré et al (1996) Eur J Neurosci 81545-1553
52Ungerstedts model
Ferré et al (2001) Parkinsonism Relat Disord
7235-241
53BRET
A2AR A1R
Ciruela et al (2006) J Neurosci 262080-2087
54Allosteric interaction in the A1-A2A receptor
heteromer
A1 Cells
Ciruela et al (2006) J Neurosci 262080-2087
55Allosteric interaction in the A1-A2A receptor
heteromer
A1-A2A
A1-A2A Cells
A1 Cells
Ciruela et al (2006) J Neurosci 262080-2087
56Allosteric interaction in the A1-A2A receptor
heteromer
A1-A2A
A1-A2A Cells
A1 Cells
Ciruela et al (2006) J Neurosci 262080-2087
57Adenosine-mediated regulation of striatal
glutamate release (in vivo microdialysis)
Quarta et al (2004) J Neurochem 91873-880
58Ciruela et al (2006) J Neurosci 262080-2087
59Adenosine-mediated regulation of striatal
glutamate release (nerve terminals)
Ciruela et al (2006) J Neurosci 262080-2087
60Adenosine-mediated regulation of striatal
glutamate release (nerve terminals)
Ciruela et al (2006) J Neurosci 262080-2087
61Adenosine-mediated regulation of striatal
glutamate release (nerve terminals)
Ciruela et al (2006) J Neurosci 262080-2087
62Quiroz et al (2009) J Neurosci (resubmitted)
63Quiroz et al (2009) J Neurosci (resubmitted)
64Quiroz et al (2009) J Neurosci (resubmitted)
65Borycz et al (2007) J Neurochem 101355-363
66Caffeine-induced striatal glutamate and dopamine
release (in vivo microdialysis)
Solinas et al (2002) J Neurosci
226321-6324 Quarta et al (2004) J Neurochem
881151-1158
67Caffeine-induced striatal glutamate and dopamine
release (in vivo microdialysis)
A1R
NMDAR
Caffeine
GLU
DA
Caffeine
Solinas et al (2002) J Neurosci
226321-6324 Quarta et al (2004) J Neurochem
881151-1158
Striatal spine module I
68The psychostimulant effects of caffeine depend on
its ability to release the pre- and postsynaptic
brakes that adenosine imposes on dopaminergic
neurotransmission by acting on different
adenosine receptor heteromers localized in
different elements of the striatal spine module.
69A1-A2A receptor heteromer function during chronic
treatment with caffeine
Caffeine 30 mg/kg
CPT 4.8 mg/kg
MSX-3 1 mg/kg
Quarta et al (2004) J Neurochem 881151-1158
70A1-A2A receptor heteromer function during chronic
treatment with caffeine
22 nM
8 nM
Ciruela et al (2006) J Neurosci 262080-2087
71Modificacions in adenosine plasma concentration
with chronic treatment with caffeine
Conlay et al (1997) Nature 389136
72A1-A2A receptor heteromer function during chronic
treatment with caffeine
Naïve rats
A1R
Adenosine
A2AR
Caffeine-tolerant rats
A1R
Adenosine
A2AR
73A1-A2A receptor heteromer function during chronic
treatment with caffeine
Naïve rats
A1R
Adenosine
A2AR
Caffeine-tolerant rats
A1R
Adenosine
A2AR
74A1-A2A receptor heteromer function during chronic
treatment with caffeine
Naïve rats
A1R
Adenosine
A2AR
Caffeine-tolerant rats
A1R
Adenosine
A2AR
75A1-A2A receptor heteromer function during chronic
treatment with caffeine
Naïve rats
A1R
Adenosine
A2AR
Caffeine-tolerant rats
A1R
Adenosine
A2AR
76- Conclusions
- Two new concepts, receptor heteromer and local
module facilitate the understanding of the
functional role of interactions between
neurotransmitters in the central nervous system,
as well as the mechanisms of central acting
drugs, such as caffeine. - The psychostimulant effects of caffeine depend on
its ability to release the pre- and postsynaptic
brakes that adenosine imposes on dopaminergic
neurotransmission by acting on different
adenosine receptor heteromers localized in
different elements of the striatal spine module. - The analysis of the function of adenosine
receptor heteromers during chronic treatment with
caffeine is giving new clues about the mechanisms
behind the well-known tolerance to the
psychostimulant effects of caffeine.
77 Acknowledgements NIDA Cesar Quiroz-Molina Janus
z Borycz Marzena Karcz-Kubicha Davide
Quarta Marcelo Solinas Zuzana Justinova Katerina
Antoniou Leigh Panlilio Chanel Barnes Catarina
Gomes Marco Orru Bruce T. Hope Marisela
Morales Amina S. Woods Steven R. Goldberg Roy A.
Wise Barry J. Hoffer Nora Volkow University of
Barcelona Rafael Franco Carme Lluis Francisco
Ciruela Vicent Casado Enric Canela Antonio Cortes
University of Coimbra Rodrigo A.
Cunha Universidad of Castilla-La Mancha Rafael
Lujan Université Libre de Bruxelles Serge
Schiffmann Karolinska Institute Kjell
Fuxe University of Modena Luigi Agnati Istituto
Superiore di Sanita Patrizia Popoli University
of Hokaido Masahiko Watanabe University of
California San Francisco Anatol C. Kreitzer