Title: On Economic Growth, Energy Consumption and Technological Change
1On Economic Growth, Energy Consumption and
Technological Change
- Jussieu 24 Avril 2006
- Dr Benjamin Warr
- Professor Robert Ayres
2Introduction to INSEAD
- Two fully connected campuses in Asia (Singapore)
and Europe (France), 143 faculty members from 31
countries, 880 MBA participants, 55 executive
MBAs, over 7000 executives and 64 PhD candidates.
On both campuses, faculty conduct leading edge
research projects with the support of 17 Centres
of Excellence.
3Sommaire
- Critique de lapproche neo-classique de la
croissance économique - Considération de la rôle dénergie
- Estimation dune proxy mesure de Technologie
- Développement dune méthode pour estimer la
croissance du Produit Intérieur Brut.
4Problématique
- Lapproche neo-classique économique
- Ignore lenvironnement et des ressources
naturelles - Comme facteur de production
- Comme bien collectif
- Considère la technologie comme exogène, continue
et perpétuelle. - Mais le progrès technologique est plutôt non
linéaire (learning by doing) avec des limites
5Une fonction de production
- Décrit les relations entre le output (PIB) et
les inputs , (les facteurs de production) - Cobb-Douglas ont développe la forme le plus
utilisé, - Y A K?L? where ? ? 1
- YPIB, Atechnology multiplier, Kcapital,
Llabour, ? et ? les élasticités de production
6Quelques problèmes
- Les ressources naturelles exclus.
- Constant returns to scale (rendement constant)
- Le dérivative défini la productivité marginal de
chaque facteur en tant que constant, égal au
factor cost ? 0.3 capital, ? 0.7 labour. - Static substitution
- Rendu dynamique avec multiplicateur technologie
(A), lerreur dune modèle OLS. - PAS de RETROACTION suites aux changements dans le
quantité et qualité du bilan énergétique.
7(No Transcript)
8(No Transcript)
9Observations
- Même avec inclusion des ressources naturelles (B)
le PIB estimé est inférieur au valeur empirique
si on utilise les factor costs pour définir
les paramètres. - Le progrès technologique (lerreur) est
responsable pour plus que 80 de la croissance. - Si on utilise pour prévision on est obligé de
faire lhypothèse que la technologie va
développer comme avant. La croissance économique
est assuré malgré nos actions.
10Industrial Metabolism(Ayres and Simonis 1994)
- New conceptualisation of societys relation to
and pressures on the environment. - The economy is physically embedded into the
environment. - The economy is an open-system with regards matter
energy. - Matter and energy societal throughputs must gt
minimum requirements technological progress. - RESOURCE SCARCITY Societies intervene with
purpose to gain better access to supplies of
natural resources (through technology and
resource substitutions .i.e. energy) a
supply-side problem. - ASSIMILATIVE CAPACITY Societies must restrict
waste flows to the environment (output side).
11The Salter Cycle, an engine for growth.
12Criteria for Environmental Accounting
- Environmental accounting must be
- Politically relevant strength of the concept to
provide information for policy decision and
public discourse. - Feasibility often requires reduced complexity
- Definition of scale and then system boundaries
- Accurate source information
- Methods to estimate stocks flows
13Energie comme facteur de production quel mesure
faut il?
- Pas tout lénergie utilisé est utile dans
léconomie conséquence du 2eme loi de
Thermodynamique. - Faut considérer la quantité plus qualité de
lénergie utilisé - Faut quantifier le progrès technologique et
leffet sur la quantité et le façon quon utilise
énergie.
14(No Transcript)
15Task efficiency specify service define the task
- The first objective of any technical study of
energy use is to establish a standard of
performance. - What is the difference between a service and a
task? - (service) keeping warm, (task) providing heat to
a home - (service) structures in society, (task) making
aluminium - (service) mobility, (task) moving a vehicle
- Services must consider non-technical trade-offs,
tasks require only a physics perspective. - This permits,
- Evaluation of the efficiency of present uses.
- Definition of goals towards which technical
innovation can strive.
16Thermodynamics and available work
- Necessary to define a Minimum Task Energy to
allow consideration of - Interchanging devices or systems (mass transport
vs. Cars) - Seeking technological innovations (aluminium for
steel) - The 1st Law (convervation of energy) is
inadequate for considering minimimum task energy. - The 2nd law (the entropy law) indicates that in
any process involving heat, there is an
inexorable increase of entropy (disorder),
meaning that not all the energy is available in
useful form
17The 1st Law (conservation of energy) is
inadequate for considering minimimum task energy.
- ? energy transfer (of desired kind) / energy
input - Maximum value may be greater than 1.
- No explicit consideration of the quality of the
energy and its ability to do useful work. - Cannot be generalised to complex systems with
work and heat outputs.
18The 2nd law (the entropy law)
- indicates that in any process involving heat,
there is an inexorable increase of entropy
(disorder), meaning that not all the energy is
available in useful form - For any device or system the 2nd Law Efficiency e
is the ratio of the minimum exergy that could
perform the task (Bmin), to the exergy actually
consumed in doing the job (Bactual). - Its maximum value is 1.
- Maximising e minimises exergy demand and wastes
generated for a given task.
19Exergy and Exergy Balance
- Exergy is the useful part of the energy.
- There are 4 components
- Kinetic exergy of bulk motion
- Potential gravitational or electro-magnetic field
differentials - Physical exergy from temperature and pressure
differentials - Chemical exergy arising from differences in
chemical composition - We can ignore the first two for many industrial
and economic applications.
20Exergy or Available Work
- So, not all energy can be made available in
useful form (consequence of 2nd Law). - Available work is an energy measure that is
actually consumed in a process. - Work is the highest quality (lowest entropy) form
of energy. It is often called exergy. - Exergy The maximum amount of work that a
subsystem can do on its surroundings as it
approaches thermodynamic equilibrium reversibly. - Exergy is proportional to the future entropy
production, but has units of energy. - Exergy is gained or lost in physical processes.
- Minimising exergy consumption is a measureable
objective to optimise energy consuming tasks.
21(No Transcript)
22(No Transcript)
23(No Transcript)
24Example Chemical exergy
- Production of pure iron (Fe2) from iron oxide
(Fe2O3) - This requires exergy from burning coke (pure
carbon) - Carbon dioxide (CO2) is the waste product
- 2Fe2O3 3C ? 4Fe 3CO2
- Correct mass balance all atoms in ome out.
Conversion of mass causes inevitable joint
product CO2 - 0.75 moles of CO2 per Kg of Fe.
25Iron production 1
- 2Fe2O3 3C ? 4Fe 3CO2
- Making 4 moles of Fe requires generation of 3
moles of CO2 - And 1505.6 Kj which comes from this oxidation of
carbon - But 3 moles of C contain only 1230.9
- We need 0.76 C extra.
26Iron Production 2
- 2Fe2O3 3C ? 4Fe 3CO2
- Correct mass balance, incorrect exergy balance
- 2 Fe2O3 3.76 C 0.76 O2 ? 4 Fe 3.76 CO2
- (33.0) (1542.7) (3.0) (1505.6)
(74.8) - On the input side oxygen has been added to
fulfill the balance of the extra C required - 1580 kJ in ? 1580 kJ out
- This is for an ideal reversible transformation.
No entropy generated or exergy lost. - Hence 0.94 moles of waste CO2 are inevitable per
mole Fe produced (corresponds to 0.74kg CO2 per
kg Fe) - This is the thermodynamic minimum.
27Iron Production Reality
- The 410.3 kJ/mole from source C is never used
100 efficiently - Blast furnace average have efficiencies of 33.
- So, one mole of C one obtains only 135.4kJ
- As a result need 12.42 moles of C instead of
3.76. - 2 Fe2O3 12.42 C 9.42 O2 ? 4 Fe 12.42 CO2
heat - (33.0) (5095.9) (37.7) (1505.6)
(247.2) - B lost 3413.8 kJ
- 2/3 rd of waste produced is unecessary.
28Types of Exergy Service
- Prime Movers ( electricity)
- Transport
- High Temperature Process Heat
- Mid and Low Temperature Process Heat
- Lighting
- Non-Fuel
29Petroleum Exergy Flows
30Coal, Petroleum, Gas Exergy breakdown by use, US
1900-2000
Transport uses
Declining fraction to heat
Increasing fraction to electricity
31Total Exergy Breakdown by Use, US 1900-2000
Heat
Electricity
Other Prime Movers
Non-Fuel
32Lighting Efficiency
33Simplified process view Aluminium
34(No Transcript)
35Efficiencies and GDP/Exergy Input
36Technical efficiency, US 1900-2000
37Useful Work/GDP Ratios, US 1900-2000
1st Oil Crisis - US Peak Oil Production
38How does our model work ?
- Cobb-Douglas or LINEX
- At the total factor productivity is REMOVED
- Rt natural resource services replaced by Useful
Work, where U F R - Ft technical efficiency of energy to work
conversion
39REXS economic output module
40Labour supply feedback dynamics
- Parameters for USA 1900-2000
- Structural Shift Time C1959, Structural Shift
Time D1920 - F Labour Fire Rate A0.108, F Labour Fire Rate
B0.120 - F Labour Hire Rate A0.124 F Labour Hire Rate
B0.135
41Labour hire and fire parameters
42Labour validation by empirical fit
43Capital accumulation feedback loop
- Parameters for USA 1900-2000
- Investment Fraction A0.081 Investment Fraction
B0.074 - Depreciation Rate A0.059 Depreciation Rate
B0.106 - Structural Shift Time A1970 Structural Shift
Time B1930
44Capital investment and depreciation
45Capital validation by empirical fit
46Output validation of full model, US 1900-2000
47LINEX fits for GDP, Japan and US 1900-2000.
48(No Transcript)
49A commonly used reference mode
50The REXS alternative
Average rate of decline 1.2 per annum
51The dematerialising dynamics
52Primary exergy intensity (B/GDP) of output decay
feedback mechanism.
- Parameters
- Rate of Decay Fractional Decay RatePrimary
Exergy Intensity of Output - Fractional Decay Rate0.012
To the right Processes aggregated inthe REXS
dynamics
53Projections of future output
- Altering the future rates of the energy intensity
of output - The average decay rate of the exergy intensity of
output (R/GDP) for the period 1900-1998 is 1.2 - The simulations involved increasing or decreasing
this parameter from 1998 onwards, while keeping
the values of all other parameters fixed. - The following illustrations provide a summary of
the results.
54Varying rates of dematerialisation
The constant rate of exergy intensity decline was
altered to vary between 0.55 and 1.65 p.a.
55Effects on efficiency improvements
The business as usual case If technical
efficiency does not increase in pace with
de-materialisation The rate of growth slows.
56GDP forecasts dematerialisation scenarios ,US
2000-2050
57Historical and forecast GDP for alternative rates
of decline of the energy intensity of output, US
1900-2000
58Forecast GDP growth rates for three alternative
technology scenarios (US 2050).
Note the feedback between f growth and GDP growth
59Historical and forecast technical efficiency of
energy conversion, for 3 alternative rates of
technical efficiency growth, US 1950-2000.
60Historical and forecast GDP, for 3 alternative
rates of technical efficiency growth, US
1950-2050
61Conclusions
- Travail utile comme facteur de production
- Application du 2 loi pour proxy de progrès
technologique - Fonction LINEX et représentation Systèmes
Dynamique permettant - Estimation historique
- substitution dynamique suite aux progrès
- Feedback entre progrès technologique et le
quantité et qualité des sources énergétique et
lefficacité dutilisation