On Economic Growth, Energy Consumption and Technological Change - PowerPoint PPT Presentation

1 / 61
About This Presentation
Title:

On Economic Growth, Energy Consumption and Technological Change

Description:

Two fully connected campuses in Asia (Singapore) and Europe (France), 143 ... Si on utilise pour pr vision on est oblig de faire l'hypoth se que la ... – PowerPoint PPT presentation

Number of Views:128
Avg rating:3.0/5.0
Slides: 62
Provided by: benjam59
Category:

less

Transcript and Presenter's Notes

Title: On Economic Growth, Energy Consumption and Technological Change


1
On Economic Growth, Energy Consumption and
Technological Change
  • Jussieu 24 Avril 2006
  • Dr Benjamin Warr
  • Professor Robert Ayres

2
Introduction to INSEAD
  • Two fully connected campuses in Asia (Singapore)
    and Europe (France), 143 faculty members from 31
    countries, 880 MBA participants, 55 executive
    MBAs, over 7000 executives and 64 PhD candidates.
    On both campuses, faculty conduct leading edge
    research projects with the support of 17 Centres
    of Excellence.

3
Sommaire
  • Critique de lapproche neo-classique  de la
    croissance économique
  • Considération de la rôle dénergie
  • Estimation dune  proxy  mesure de Technologie
  • Développement dune méthode pour estimer la
    croissance du Produit Intérieur Brut.

4
Problématique
  • Lapproche neo-classique économique
  • Ignore lenvironnement et des ressources
    naturelles
  • Comme facteur de production
  • Comme bien collectif
  • Considère la technologie comme exogène, continue
    et perpétuelle.
  • Mais le progrès technologique est plutôt non
    linéaire (learning by doing) avec des limites

5
Une fonction de production
  • Décrit les relations entre le  output  (PIB) et
    les  inputs , (les facteurs de production)
  • Cobb-Douglas ont développe la forme le plus
    utilisé,
  • Y A K?L? where ? ? 1
  • YPIB, Atechnology multiplier, Kcapital,
    Llabour, ? et ? les élasticités de production

6
Quelques problèmes
  • Les ressources naturelles exclus.
  • Constant returns to scale (rendement constant)
  • Le dérivative défini la productivité marginal de
    chaque facteur en tant que constant, égal au
     factor cost  ? 0.3 capital, ? 0.7 labour.
  • Static substitution
  • Rendu dynamique avec multiplicateur technologie
    (A), lerreur dune modèle OLS.
  • PAS de RETROACTION suites aux changements dans le
    quantité et qualité du bilan énergétique.

7
(No Transcript)
8
(No Transcript)
9
Observations
  • Même avec inclusion des ressources naturelles (B)
    le PIB estimé est inférieur au valeur empirique
    si on utilise les  factor costs  pour définir
    les paramètres.
  • Le progrès technologique (lerreur) est
    responsable pour plus que 80 de la croissance.
  • Si on utilise pour prévision on est obligé de
    faire lhypothèse que la technologie va
    développer comme avant. La croissance économique
    est assuré malgré nos actions.

10
Industrial Metabolism(Ayres and Simonis 1994)
  • New conceptualisation of societys relation to
    and pressures on the environment.
  • The economy is physically embedded into the
    environment.
  • The economy is an open-system with regards matter
    energy.
  • Matter and energy societal throughputs must gt
    minimum requirements technological progress.
  • RESOURCE SCARCITY Societies intervene with
    purpose to gain better access to supplies of
    natural resources (through technology and
    resource substitutions .i.e. energy) a
    supply-side problem.
  • ASSIMILATIVE CAPACITY Societies must restrict
    waste flows to the environment (output side).

11
The Salter Cycle, an engine for growth.
12
Criteria for Environmental Accounting
  • Environmental accounting must be
  • Politically relevant strength of the concept to
    provide information for policy decision and
    public discourse.
  • Feasibility often requires reduced complexity
  • Definition of scale and then system boundaries
  • Accurate source information
  • Methods to estimate stocks flows

13
Energie comme facteur de production quel mesure
faut il?
  • Pas tout lénergie utilisé est utile dans
    léconomie conséquence du 2eme loi de
    Thermodynamique.
  • Faut considérer la quantité plus qualité de
    lénergie utilisé
  • Faut quantifier le progrès technologique et
    leffet sur la quantité et le façon quon utilise
    énergie.

14
(No Transcript)
15
Task efficiency specify service define the task
  • The first objective of any technical study of
    energy use is to establish a standard of
    performance.
  • What is the difference between a service and a
    task?
  • (service) keeping warm, (task) providing heat to
    a home
  • (service) structures in society, (task) making
    aluminium
  • (service) mobility, (task) moving a vehicle
  • Services must consider non-technical trade-offs,
    tasks require only a physics perspective.
  • This permits,
  • Evaluation of the efficiency of present uses.
  • Definition of goals towards which technical
    innovation can strive.

16
Thermodynamics and  available work 
  • Necessary to define a Minimum Task Energy to
    allow consideration of
  • Interchanging devices or systems (mass transport
    vs. Cars)
  • Seeking technological innovations (aluminium for
    steel)
  • The 1st Law (convervation of energy) is
    inadequate for considering minimimum task energy.
  • The 2nd law (the entropy law) indicates that  in
    any process involving heat, there is an
    inexorable increase of entropy (disorder),
    meaning that not all the energy is available in
    useful form 

17
The 1st Law (conservation of energy) is
inadequate for considering minimimum task energy.
  • ? energy transfer (of desired kind) / energy
    input
  • Maximum value may be greater than 1.
  • No explicit consideration of the quality of the
    energy and its ability to do useful work.
  • Cannot be generalised to complex systems with
    work and heat outputs.

18
The 2nd law (the entropy law)
  • indicates that  in any process involving heat,
    there is an inexorable increase of entropy
    (disorder), meaning that not all the energy is
    available in useful form 
  • For any device or system the 2nd Law Efficiency e
    is the ratio of the minimum exergy that could
    perform the task (Bmin), to the exergy actually
    consumed in doing the job (Bactual).
  • Its maximum value is 1.
  • Maximising e minimises exergy demand and wastes
    generated for a given task.

19
Exergy and Exergy Balance
  • Exergy is the useful part of the energy.
  • There are 4 components
  • Kinetic exergy of bulk motion
  • Potential gravitational or electro-magnetic field
    differentials
  • Physical exergy from temperature and pressure
    differentials
  • Chemical exergy arising from differences in
    chemical composition
  • We can ignore the first two for many industrial
    and economic applications.

20
Exergy or  Available Work 
  • So, not all energy can be made available in
    useful form (consequence of 2nd Law).
  • Available work is an energy measure that is
    actually consumed in a process.
  • Work is the highest quality (lowest entropy) form
    of energy. It is often called exergy.
  • Exergy The maximum amount of work that a
    subsystem can do on its surroundings as it
    approaches thermodynamic equilibrium reversibly.
  • Exergy is proportional to the future entropy
    production, but has units of energy.
  • Exergy is gained or lost in physical processes.
  • Minimising exergy consumption is a measureable
    objective to optimise energy consuming tasks.

21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
Example Chemical exergy
  • Production of pure iron (Fe2) from iron oxide
    (Fe2O3)
  • This requires exergy from burning coke (pure
    carbon)
  • Carbon dioxide (CO2) is the waste product
  • 2Fe2O3 3C ? 4Fe 3CO2
  • Correct mass balance all atoms in ome out.
    Conversion of mass causes inevitable joint
    product CO2
  • 0.75 moles of CO2 per Kg of Fe.

25
Iron production 1
  • 2Fe2O3 3C ? 4Fe 3CO2
  • Making 4 moles of Fe requires generation of 3
    moles of CO2
  • And 1505.6 Kj which comes from this oxidation of
    carbon
  • But 3 moles of C contain only 1230.9
  • We need 0.76 C extra.

26
Iron Production 2
  • 2Fe2O3 3C ? 4Fe 3CO2
  • Correct mass balance, incorrect exergy balance
  • 2 Fe2O3 3.76 C 0.76 O2 ? 4 Fe 3.76 CO2
  • (33.0) (1542.7) (3.0) (1505.6)
    (74.8)
  • On the input side oxygen has been added to
    fulfill the balance of the extra C required
  • 1580 kJ in ? 1580 kJ out
  • This is for an ideal reversible transformation.
    No entropy generated or exergy lost.
  • Hence 0.94 moles of waste CO2 are inevitable per
    mole Fe produced (corresponds to 0.74kg CO2 per
    kg Fe)
  • This is the thermodynamic minimum.

27
Iron Production Reality
  • The 410.3 kJ/mole from source C is never used
    100 efficiently
  • Blast furnace average have efficiencies of 33.
  • So, one mole of C one obtains only 135.4kJ
  • As a result need 12.42 moles of C instead of
    3.76.
  • 2 Fe2O3 12.42 C 9.42 O2 ? 4 Fe 12.42 CO2
    heat
  • (33.0) (5095.9) (37.7) (1505.6)
    (247.2)
  • B lost 3413.8 kJ
  • 2/3 rd of waste produced is unecessary.

28
Types of Exergy Service
  • Prime Movers ( electricity)
  • Transport
  • High Temperature Process Heat
  • Mid and Low Temperature Process Heat
  • Lighting
  • Non-Fuel

29
Petroleum Exergy Flows
30
Coal, Petroleum, Gas Exergy breakdown by use, US
1900-2000
Transport uses
Declining fraction to heat
Increasing fraction to electricity
31
Total Exergy Breakdown by Use, US 1900-2000
Heat
Electricity
Other Prime Movers
Non-Fuel
32
Lighting Efficiency
33
Simplified process view Aluminium
34
(No Transcript)
35
Efficiencies and GDP/Exergy Input
36
Technical efficiency, US 1900-2000
37
Useful Work/GDP Ratios, US 1900-2000
1st Oil Crisis - US Peak Oil Production
38
How does our model work ?
  • Cobb-Douglas or LINEX
  • At the total factor productivity is REMOVED
  • Rt natural resource services replaced by Useful
    Work, where U F R
  • Ft technical efficiency of energy to work
    conversion

39
REXS economic output module
40
Labour supply feedback dynamics
  • Parameters for USA 1900-2000
  • Structural Shift Time C1959, Structural Shift
    Time D1920
  • F Labour Fire Rate A0.108, F Labour Fire Rate
    B0.120
  • F Labour Hire Rate A0.124 F Labour Hire Rate
    B0.135

41
Labour hire and fire parameters
42
Labour validation by empirical fit
43
Capital accumulation feedback loop
  • Parameters for USA 1900-2000
  • Investment Fraction A0.081 Investment Fraction
    B0.074
  • Depreciation Rate A0.059 Depreciation Rate
    B0.106
  • Structural Shift Time A1970 Structural Shift
    Time B1930

44
Capital investment and depreciation
45
Capital validation by empirical fit
46
Output validation of full model, US 1900-2000
47
LINEX fits for GDP, Japan and US 1900-2000.
48
(No Transcript)
49
A commonly used reference mode
50
The REXS alternative
Average rate of decline 1.2 per annum
51
The dematerialising dynamics
52
Primary exergy intensity (B/GDP) of output decay
feedback mechanism.
  • Parameters
  • Rate of Decay Fractional Decay RatePrimary
    Exergy Intensity of Output
  • Fractional Decay Rate0.012

To the right Processes aggregated inthe REXS
dynamics
53
Projections of future output
  • Altering the future rates of the energy intensity
    of output
  • The average decay rate of the exergy intensity of
    output (R/GDP) for the period 1900-1998 is 1.2
  • The simulations involved increasing or decreasing
    this parameter from 1998 onwards, while keeping
    the values of all other parameters fixed.
  • The following illustrations provide a summary of
    the results.

54
Varying rates of dematerialisation
The constant rate of exergy intensity decline was
altered to vary between 0.55 and 1.65 p.a.
55
Effects on efficiency improvements
The business as usual case If technical
efficiency does not increase in pace with
de-materialisation The rate of growth slows.
56
GDP forecasts dematerialisation scenarios ,US
2000-2050
57
Historical and forecast GDP for alternative rates
of decline of the energy intensity of output, US
1900-2000
58
Forecast GDP growth rates for three alternative
technology scenarios (US 2050).
Note the feedback between f growth and GDP growth
59
Historical and forecast technical efficiency of
energy conversion, for 3 alternative rates of
technical efficiency growth, US 1950-2000.
60
Historical and forecast GDP, for 3 alternative
rates of technical efficiency growth, US
1950-2050
61
Conclusions
  • Travail utile comme facteur de production
  • Application du 2 loi pour  proxy  de progrès
    technologique
  • Fonction LINEX et représentation Systèmes
    Dynamique permettant
  • Estimation historique
  •  substitution dynamique  suite aux progrès
  • Feedback entre progrès technologique et le
    quantité et qualité des sources énergétique et
    lefficacité dutilisation
Write a Comment
User Comments (0)
About PowerShow.com